首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
r语言dfftime转数值
2024-08-02
R语言日期的表示和运算(详细总结)
1.取出当前日期 Sys.Date() [1] "2014-10-29" date() #注意:这种方法返回的是字符串类型 [1] "Wed Oct 29 20:36:07 2014" 2.在R中日期实际是double类型,是从1970年1月1日以来的天数 typeof(Sys.Date()) [1] "double" 3.转换为日期 用as.Date()可以将一个字符串转换为日期值,默认格式是yyyy-mm-dd. as.Date("
R语言的精度和时间效率比较(简单版)
R语言的最大数值 在R语言里面,所能计算的最大数值可以用下面的方法获得: ###R可计算最大数值 .Machine 在编程的时候注意不要超过这个数值.当然,普通情况下也不可能超过的. R语言的最大精度 R语言的舍入误差要比python好不少,但是也还是有的. ###最小非零整数 2^-1074 ###最大数 2^1023 ###机器误差 2^-52 + 1 - 1 2^-53 + 1 - 1 ###比较两个数字 all.equal(2^-12 + 1,2^-13 + 1,tolerance =
R入门<三>-R语言实战第4章基本数据管理摘要
入门书籍:R语言实战 进度:1-4章 摘要: 1)实用的包 forecast:用于做时间序列预测的,有auto.arima函数 RODBC:可以用来读取excel文件.但据说R对csv格式适应更加良好,相应的导入导出均较为方便(read.table, write等) reshape:目前用到rename函数,可以方便的对数据变量重命名 fCalendar:在日期输入处提及,据说对日期运算有奇效,但无具体示例.同理如lubridate sqldf:在数据选取处提及,可代替subset以及各种whe
几种经典排序算法的R语言描述
1.数据准备 # 测试数组 vector = c(,,,,,,,,,,,,,,) vector ## [] 2.R语言内置排序函数 在R中和排序相关的函数主要有三个:sort(),rank(),order(). sort(x)是对向量x进行排序,返回值排序后的数值向量; rank()是求秩的函数,它的返回值是这个向量中对应元素的“排名”; order()的返回值是对应“排名”的元素所在向量中的位置. sort(vector) ## [] order(vector) ## [] rank(vect
如何在R语言中使用Logistic回归模型
在日常学习或工作中经常会使用线性回归模型对某一事物进行预测,例如预测房价.身高.GDP.学生成绩等,发现这些被预测的变量都属于连续型变量.然而有些情况下,被预测变量可能是二元变量,即成功或失败.流失或不流失.涨或跌等,对于这类问题,线性回归将束手无策.这个时候就需要另一种回归方法进行预测,即Logistic回归. 在实际应用中,Logistic模型主要有三大用途: 1)寻找危险因素,找到某些影响因变量的"坏因素",一般可以通过优势比发现危险因素: 2)用于预测,可以预测某种情况发生的概
R语言实战(三)基本图形与基本统计分析
本文对应<R语言实战>第6章:基本图形:第7章:基本统计分析 ================================================================================================================================================== 本章讨论的图形,主要用于分析数据前,对数据的初步掌握.想要对数据有一个初步的印象,最好的方式就是观察它,也就是将数据可视化.在这个过程中,我们
R语言实战(二)数据管理
本文对应<R语言实战>第4章:基本数据管理:第5章:高级数据管理 创建新变量 #建议采用transform()函数 mydata <- transform(mydata, sumx = x1 + x2, meanx = (x1 + x2)/2) 重编码 < 小于 <= 小于或等于 > 大于 >= 大于或等于 == 严格等于(比较浮点类型时慎用,易误判) != 不等于 !x 非x x | y x或y x & y x和y isTRUE(x) x是否为TRUE
R语言 三个函数sort();rank();order()
R语言入门,弄懂了几个简单的函数,分享一下:R语言排序有几个基本函数: sort():rank():order()sort()是对向量进行从小到大的排序rank()返回的是对向量中每个数值对应的秩order()返回的值表示位置,依次对应的是向量的最小值.次小值.第三小值......最大值举例> data=c(5,6,8,2,4,9)> sort(data)[1] 2 4 5 6 8 9> rank(data)[1] 3 4 5 1 2 6> order(data)[1] 4 5 1
数据分析和R语言的那点事儿_1
最近遇到一些程序员同学向我了解R语言,有些更是想转行做数据分析,故开始学习R或者Python之类的语言.在有其他编程语言的背景下,学习R的语法的确是一件十分简单的事.霸特,如果以为仅仅是这样的话那就图样图森破. 首先,数据分析是一个非常庞杂的职能,也许岗位抬头均为数据分析师的两人,做的事情却大不相同——比如使用hadoop做日志统计和使用Excel处理报表,这简直是两个领域,相互之间的职能了解,可能仅为对方工作的冰山一角. 其次,无论任何行业的数据分析,其日常工作主要为以下几块: 数据获取——数
R语言中的循环函数(Grouping Function)
R语言中有几个常用的函数,可以按组对数据进行处理,apply, lapply, sapply, tapply, mapply,等.这几个函数功能有些类似,下面介绍下这几个函数的用法. Apply 这是对一个Matrix或者Array进行某个维度的运算.其格式是: Apply(数据,维度Index,运算函数,函数的参数) 对于Matrix来说,其维度值为2,第二个参数维度Index中,1表示按行运算,2表示按列运算.下面举一个例子: m<-matrix(1:6,2,3) 构建一个简单的2行3列的矩
R语言学习笔记(二)
今天主要学习了两个统计学的基本概念:峰度和偏度,并且用R语言来描述. > vars<-c("mpg","hp","wt") > head(mtcars[vars]) mpg hp wt Mazda RX4 21.0 110 2.620 Mazda RX4 Wag 21.0 110 2.875 Datsun 710 22.8 93 2.320 Hornet 4 Drive 21.4 110 3.215 Hornet Sportab
R语言学习笔记(一)
1.不同的行业对数据集(即表格)的行和列称谓不同,统计学家称其为观测(observation)和变量(variable): 2.R语言存储数据的结构: ①向量:类似于C语言里的一位数组,执行组合功能的函数c()可用来创建向量: a <- c(1,2,3,4,5) b <- c("one","two","three") c <- c(TRUE,FALSE,TRUE) 以上,a是数值型向量,b是字符型,c是逻辑型:注意,单个向量中元
R语言快速入门上手
导言: 较早之前就听说R是一门便捷的数据分析工具,但由于课程设计的原因,一直没有空出足够时间来进行学习.最近自从决定本科毕业出来找工作之后,渐渐开始接触大数据行业的技术,现在觉得是时候把R拿下了:用了3天时间,除了对R先有一个大概认识之外,也着手敲指令.由于计算机专业的底子还不错,而且先后接触过不下10种编程语言,感觉R语言入门上手还是挺简单的.下面是自己汇总的一些简单入门代码供大家参考,感兴趣的朋友也可逐行敲打测试. 1. 介绍变量.顺序结构.分支结构.循环结构.函数使用.获取帮助等知
R语言基础:数组&列表&向量&矩阵&因子&数据框
R语言基础:数组和列表 数组(array) 一维数据是向量,二维数据是矩阵,数组是向量和矩阵的直接推广,是由三维或三维以上的数据构成的. 数组函数是array(),语法是:array(dadta, dim),其中data必须是同一类型的数据,dim是各维的长度组成的向量. 1.产生一个三维和四维数组. 例1:xx <- array(1:24, c(3, 4, 2)) #一个三维数组 例2:yy <- array(1:36, c(2, 3, 3, 2)) #一个四维数组 2.dim()函数可
Rmarkdown用法与R语言动态报告
Rmarkdown用法与R语言动态报告数据分析用R语言非常便捷,因为R语言的社区强大,并且在不断更新和完善,提供了各种分析利器.Knitr和Rmarkdown包则是数据分析中的动态报告利器. 下面是一份输出HTML文档的Rmd文件.备忘--- # 一级标题(#+空格+文字) ## 二级标题(##+空格+文字) ....... ....... ##### 五级标题 ### 无序列表 运动: - 篮球 - 足球 ### 有序列表排名: 1. 第一名 2. 第二名 3. 第三名 ## 嵌入代码 把r换
[转]概率基础和R语言
概率基础和R语言 R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大. R语言作为统计学一门语言,一直在小众领域闪耀着光芒.直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器.随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长.现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言. 要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域.让我们一起
R语言学习笔记:向量
向量是R语言最基本的数据类型. 单个数值(标量)其实没有单独的数据类型,它只不过是只有一个元素的向量. x <- c(1, 2, 4, 9) x <- c(x[1:3], 88, x[4]) #在最后一个数前面插入一个数值88,可以看到用x[4]可以取出第4个元素,用x[1:3]可以取出前3个元素 typeof(x) #查看向量里的元素的类型,注意默认是double.[1] "double" mode(x) #r语言中变量类型称为模式(mode).[1] &
主成分分析(PCA)原理及R语言实现
原理: 主成分分析 - stanford 主成分分析法 - 智库 主成分分析(Principal Component Analysis)原理 主成分分析及R语言案例 - 文库 主成分分析法的原理应用及计算步骤 - 文库 主成分分析之R篇 [机器学习算法实现]主成分分析(PCA)--基于python+numpy scikit-learn中PCA的使用方法 Python 主成分分析PCA 机器学习实战-PCA主成分分析.降维(好) 关于主成分分析的五个问题 多变量统计方法,通过析取主成分显出最大的个
机器学习与R语言
此书网上有英文电子版:Machine Learning with R - Second Edition [eBook].pdf(附带源码) 评价本书:入门级的好书,介绍了多种机器学习方法,全部用R相关的包实现,案例十分详实,理论与实例结合. 目录 第一章 机器学习简介 第二章 数据的管理和理解 第三章 懒惰学习--使用近邻分类 第四章 概率学习--朴素贝叶斯分类 第五章 分而治之--应用决策树和规则进行分类 第六章 预测数值型数据--回归方法 第七章 黑箱方法--神经网络和支持向量机 第八章 探
线性函数拟合R语言示例
线性函数拟合(y=a+bx) 1. R运行实例 R语言运行代码如下:绿色为要提供的数据,黄色标识信息为需要保存的. x<-c(0.10,0.11, 0.12, 0.13, 0.14, 0.15,0.16, 0.17, 0.18, 0.20, 0.21, 0.23) y<-c(42.0,43.5, 45.0, 45.5, 45.0, 47.5,49.0, 53.0, 50.0, 55.0, 55.0, 60.0) data1=data.frame(x=x,y=y) #数据存入数据框
R语言实战读书笔记(三)图形初阶
这篇简直是白写了,写到后面发现ggplot明显更好用 3.1 使用图形 attach(mtcars)plot(wt, mpg) #x轴wt,y轴pgabline(lm(mpg ~ wt)) #画线拟合title("Regression of MPG on Weight")detach(mtcars) R语言中画图只有一幅,如果要画多幅,用dev.new() 3.2 例子 dose <- c(20, 30, 40, 45, 60)drugA <- c(16, 20, 27,
热门专题
js点击添加css样式
modbusrc4加密
sqlserver字典类型由datetime改为int
visual studio 装了unity 没有c#
html小米商城首页代码
Python断言最优
elment ui 上传至特定目录
中国剩余定理一组互素的数据
vue filter 传参数
k近邻与k均值有什么区别
COCO 数据集 如何获取
基于gpl协议发行的软件有什么要求
如何安装laravel
eclipse添加第三方jar
cuda设置环境变量
centos7允许密码登录
web服务器配置与管理https
SublimeText打开文件名称为乱码
mongo 分片集群查看是否延迟
droidjack运行环境