首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
r语言ggplot2绘制ROC
2024-08-24
R语言绘图:ggplot2绘制ROC
使用ggplot2包绘制ROC曲线 rocplot<- function(pred, truth, ...){ predob<- prediction(pred, truth) #打印AUc perf.auc<- performance(predob, measure = 'auc', x.measure = 'cutoff') # perf<- performance(predob, 'tpr','fpr') df<- data.frame(x = attributes(p
R语言 ggplot2包
R语言 ggplot2包的学习 分析数据要做的第一件事情,就是观察它.对于每个变量,哪些值是最常见的?值域是大是小?是否有异常观测? ggplot2图形之基本语法: ggplot2的核心理念是将绘图与数据分离,数据相关的绘图与数据无关的绘图分离ggplot2是按图层作图ggplot2保有命令式作图的调整函数,使其更具灵活性ggplot2将常见的统计变换融入到了绘图中.ggplot的绘图有以下几个特点:第一,有明确的起始(以ggplot函数开始)与终止(一句语句一幅图):其二,图层之间的叠加
R语言ggplot2 简介
ggplot2是一个绘制可视化图形的R包,汲取了R语言基础绘图系统(graphics) 和l attice包的优点,摒弃了相关的缺点,创造出来的一套独立的绘图系统: ggplot2 有以下几个特点: 1) 图形映射, 自动化的将数据映射到图形上: 2) 图层叠加, 将不同形状的图表视为图层(layer), 可以方便的进行叠加 3)提供了范围控制(scale), 坐标系转换(coord), 分面(facet)等特性: 先看一个最简单的例子,用ggplot2 绘制一副散点图: 代码示例: libr
R语言:绘制知识图谱
知识图谱主要是通过将应用数学,图形学,信息可视化技术,信息科学等学科的理论与方法与计量学引文分析.共现分析等方法结合,利用可视化的图谱形象地展示学科的核心结构.发展历史.前沿领域以及整体知识架构达到多学科融合目的的现代理论. 今天我们借助networkD3包里面的simpleNetwork 函数来绘制一个类似CSDN微信开发的知识图谱,效果图如下: 首先我们先来分析一下这张图,图里面的微信支付——微信支付,小程序——小程序,等这些,它们之间本不需要连线,但这里是为了美观好看,才有这些连线,但实际
R语言ggplot2软件包
相比r语言自带软件包,ggplot2有以下特色 图形语法的核心:统计图形是数据向几何对象属性的一个映射.
R语言绘图:ROC曲线图
使用pROC包绘制ROC曲线 #####***绘制ROC曲线***##### library("pROC") N <- dim(data2)[1] #数据长度 set.seed(1234) #设置随机种子 ind <- sample(2, N, replace=TRUE, prob = c(0.8,0.2)) data_train <- data2[ind == 1,] #生成训练集 data_test <- data2[ind == 2,] #生成测试集 re
R语言 ggplot2 画平滑图
library(splines) library(ggplot2) dt1 <- structure(list(Age = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("o80", "u80"), class = "factor"), NoP = c(47L, 5
R语言ggplot2中的panel. strip 基本概念
ggplot2 是一套独立的绘图系统,在一个完整的ggplot2的图表中,会有下面几个概念: 1) plot 2) panel 3) strip 4) legend 所有这些元素都会出现在图表中 代码示例: ggplot(mpg, aes(displ, cty, colour = cyl)) + geom_point() + facet_grid(. ~ cyl) + theme(plot.background = element_rect(fill = "green", colour
R语言——ggplot2补充知识点
案例 ggplot(head(age_data,10),aes(x=reorder(Country,age_median),y=age_median))+ geom_bar(aes(fill=Country),stat='identity')+ geom_text(aes(label=age_median),hjust=1.4,colour='white')+ coord_flip()+ theme_minimal()+ theme(legend.position='none') 相关知识1:画
R语言作图 绘制中国地图
参考:https://zhuanlan.zhihu.com/p/27360411 第一步.下载shapefile文件 一直都没有找到下载地址,死在了第一步 第二步.导入shp文件 第三步.画图
R语言︱ROC曲线——分类器的性能表现评价
笔者寄语:分类器算法最后都会有一个预测精度,而预测精度都会写一个混淆矩阵,所有的训练数据都会落入这个矩阵中,而对角线上的数字代表了预测正确的数目,即True Positive+True Nagetive. -------------------------- 相关内容: 1. R语言︱ROC曲线--分类器的性能表现评价 2.机器学习中的过拟合问题 3.R语言︱机器学习模型评估方案(以随机森林算法为例) -------------------------- 1.TPR与TNR 同时可以相应算出TP
第五篇:R语言数据可视化之散点图
散点图简介 散点图通常是用来表述两个连续变量之间的关系,图中的每个点表示目标数据集中的每个样本. 同时散点图中常常还会拟合一些直线,以用来表示某些模型. 绘制基本散点图 本例选用如下测试数据集: 绘制方法是首先调用ggplot函数选定数据集,并在aes参数中指明横轴纵轴.然后调用散点图函数geom_point()便可绘制出基本散点图.R语言示例代码如下: # 基函数 ggplot(ah, aes(x = ageYear, y = heightIn)) + # 散点图函数 geom_point()
R语言中文社区历史文章整理(类型篇)
R语言中文社区历史文章整理(类型篇) R包: R语言交互式绘制杭州市地图:leafletCN包简介 clickpaste包介绍 igraph包快速上手 jiebaR,从入门到喜欢 Catterplots包,让你绘制不一样的图 今天再来谈谈REmap包 ggplot2你需要知道的都在这... R访问数据库管理系统(通过RODBC包和RMySQL包两种方式) NLP——自然语言处理(三)text2vec包 Rattle:数据挖掘的界面化操作 借助caret包实现特征选择的工作 R语言的高质量图形
R语言学习笔记(五)绘图(1)
R是一个惊艳的图形构建平台,这也是R语言的强大之处.本文将分享R语言简单的绘图命令. 本文所使用的数据或者来自R语言自带的数据(mtcars)或者自行创建. 首先,让我们来看一个简单例子: dose <- c(20, 30, 40, 45, 60) drugA <- c(16,20,27,40,60) plot(dose, drugA) 绘制的图形如下: 我们有必要对上述代码做些说明:首句和第二条语句创建两个向量,第三条语句打开一个图形窗口并生成一幅散点图. 这也许是个极为
R语言绘图:时间序列分析 ggplot2绘制ACF PACF
R语言真是博大精深 方法一 Acf(gold[,2], type = "correlation",lag.max = 100) Acf(gold[,2], type = "partial") 方法二 library(ggfortify) autoplot(acf(gold[,2], plot = FALSE)) 方法三 bacf <- acf(gold[, 2], plot = FALSE) bacfdf <- with(bacf, data.frame
R语言绘制空间热力图
先上图 R语言的REmap包拥有非常强大的空间热力图以及空间迁移图功能,里面内置了国内外诸多城市坐标数据,使用起来方便快捷. 开始 首先安装相关包 install_packages("devtools") install_packages("REmap") library(devtools) library(REmap) 我们来试试其强大的城市坐标获取功能 city<- c("beijing","上海") get_geo
第一篇:R语言数据可视化概述(基于ggplot2)
前言 ggplot2是R语言最为强大的作图软件包,强于其自成一派的数据可视化理念.当熟悉了ggplot2的基本套路后,数据可视化工作将变得非常轻松而有条理. 本文主要对ggplot2的可视化理念及开发套路做一个总体介绍,具体绘图方法(如折线图,柱状图,箱线图等)将在后面的文章中分别进行讲解. 核心理念 1. 将数据,数据相关绘图,数据无关绘图分离 这点可以说是ggplot2最为吸引人的一点.众所周知,数据可视化就是将我们从数据中探索的信息与图形要素对应起来的过程. ggplot2将数据,数据到图
R语言绘制花瓣图flower plot
R语言中有很多现成的R包,可以绘制venn图,但是最多支持5组,当组别数大于5时,venn图即使能够画出来,看上去也非常复杂,不够直观: 在实际的数据分析中,组别大于5的情况还是经常遇到的,这是就可以考虑用花瓣图来进行数据的可视化 比如下面这个例子: 来源于该链接 https://www.researchgate.net/figure/235681265_fig3_The-pan-genome-of-Sinorhizobium-The-flower-plots-and-Venn-diagram
R语言绘制沈阳地铁线路图
##使用leaflet绘制地铁线路图,要求 ##(1)图中绘制地铁线路 library(dplyr) library(leaflet) library(data.table) stations<-read.csv("C:\\Users\\BIGDATA\\Desktop\\文件\\BigData\\R语言\\相关作业文档\\3\\第五次实训课数据\\systation.csv"); stations <- arrange(stations,line,line_id) lin
R语言绘制相对性关系图
准备 第一步就是安装R语言环境以及RStudio 图绘制准备 首先安装库文件,敲入指令,回车 install.packages('corrplot') 然后安装excel导入的插件,点击右上角import Dataset,选中From excel即可. 这些操作都很简单~~ 数据预处理 然后到了数据输入了,这么多数据,我们总不能一行输入吧?那得有多蠢 于是我们利用上了数据导入功能,当当当~~ 然而理想很丰满,现实却很蛋疼,导入的excel数据格式不是我们希望的矩阵格式ORZ! 哎,休息下喝杯茶,
热门专题
stireport.pages属性说明
sed命令替换的有空格如何处理
uvm_reg_block高级使用
centos7安装python3.9.4
vmware-vcsa要安装吗
如何获得网页post_data
在虚拟机linux中使用p0f
maven 访问 nexus
c# datagridview 数据在最后行汇总
alt加逗号是什么功能
CAD.NET 中直线间最短距离
current account会如何变化
nginx域名转发后,bloburl还有效吗
protobuf c 数据类型
charles mock 数据返回
win10怎么激活工作站版
cuadmin登不上
linux的php连接mariadb
Python最强上升子序列nlogn
chemdraw结构复制到PDF