首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
R语言ggplot2 labs
2024-10-06
R语言ggplot2-labs 函数
labs 函数主要有以下三个用途: 1) 设置图片的标题(title), 子标题(subtitle), 引用(caption) 代码示例: ggplot(mtcars, aes(mpg, wt, colour = cyl)) + geom_point() + labs(title = "This is title", subtitle = "This is subtitle", caption = "This is caption") 效果图如下
R语言 ggplot2包
R语言 ggplot2包的学习 分析数据要做的第一件事情,就是观察它.对于每个变量,哪些值是最常见的?值域是大是小?是否有异常观测? ggplot2图形之基本语法: ggplot2的核心理念是将绘图与数据分离,数据相关的绘图与数据无关的绘图分离ggplot2是按图层作图ggplot2保有命令式作图的调整函数,使其更具灵活性ggplot2将常见的统计变换融入到了绘图中.ggplot的绘图有以下几个特点:第一,有明确的起始(以ggplot函数开始)与终止(一句语句一幅图):其二,图层之间的叠加
R语言ggplot2 简介
ggplot2是一个绘制可视化图形的R包,汲取了R语言基础绘图系统(graphics) 和l attice包的优点,摒弃了相关的缺点,创造出来的一套独立的绘图系统: ggplot2 有以下几个特点: 1) 图形映射, 自动化的将数据映射到图形上: 2) 图层叠加, 将不同形状的图表视为图层(layer), 可以方便的进行叠加 3)提供了范围控制(scale), 坐标系转换(coord), 分面(facet)等特性: 先看一个最简单的例子,用ggplot2 绘制一副散点图: 代码示例: libr
R语言ggplot2软件包
相比r语言自带软件包,ggplot2有以下特色 图形语法的核心:统计图形是数据向几何对象属性的一个映射.
R语言 ggplot2 画平滑图
library(splines) library(ggplot2) dt1 <- structure(list(Age = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("o80", "u80"), class = "factor"), NoP = c(47L, 5
R语言ggplot2中的panel. strip 基本概念
ggplot2 是一套独立的绘图系统,在一个完整的ggplot2的图表中,会有下面几个概念: 1) plot 2) panel 3) strip 4) legend 所有这些元素都会出现在图表中 代码示例: ggplot(mpg, aes(displ, cty, colour = cyl)) + geom_point() + facet_grid(. ~ cyl) + theme(plot.background = element_rect(fill = "green", colour
R语言——ggplot2补充知识点
案例 ggplot(head(age_data,10),aes(x=reorder(Country,age_median),y=age_median))+ geom_bar(aes(fill=Country),stat='identity')+ geom_text(aes(label=age_median),hjust=1.4,colour='white')+ coord_flip()+ theme_minimal()+ theme(legend.position='none') 相关知识1:画
第五篇:R语言数据可视化之散点图
散点图简介 散点图通常是用来表述两个连续变量之间的关系,图中的每个点表示目标数据集中的每个样本. 同时散点图中常常还会拟合一些直线,以用来表示某些模型. 绘制基本散点图 本例选用如下测试数据集: 绘制方法是首先调用ggplot函数选定数据集,并在aes参数中指明横轴纵轴.然后调用散点图函数geom_point()便可绘制出基本散点图.R语言示例代码如下: # 基函数 ggplot(ah, aes(x = ageYear, y = heightIn)) + # 散点图函数 geom_point()
第一篇:R语言数据可视化概述(基于ggplot2)
前言 ggplot2是R语言最为强大的作图软件包,强于其自成一派的数据可视化理念.当熟悉了ggplot2的基本套路后,数据可视化工作将变得非常轻松而有条理. 本文主要对ggplot2的可视化理念及开发套路做一个总体介绍,具体绘图方法(如折线图,柱状图,箱线图等)将在后面的文章中分别进行讲解. 核心理念 1. 将数据,数据相关绘图,数据无关绘图分离 这点可以说是ggplot2最为吸引人的一点.众所周知,数据可视化就是将我们从数据中探索的信息与图形要素对应起来的过程. ggplot2将数据,数据到图
R语言绘图:时间序列分析 ggplot2绘制ACF PACF
R语言真是博大精深 方法一 Acf(gold[,2], type = "correlation",lag.max = 100) Acf(gold[,2], type = "partial") 方法二 library(ggfortify) autoplot(acf(gold[,2], plot = FALSE)) 方法三 bacf <- acf(gold[, 2], plot = FALSE) bacfdf <- with(bacf, data.frame
数据分析和R语言的那点事儿_1
最近遇到一些程序员同学向我了解R语言,有些更是想转行做数据分析,故开始学习R或者Python之类的语言.在有其他编程语言的背景下,学习R的语法的确是一件十分简单的事.霸特,如果以为仅仅是这样的话那就图样图森破. 首先,数据分析是一个非常庞杂的职能,也许岗位抬头均为数据分析师的两人,做的事情却大不相同——比如使用hadoop做日志统计和使用Excel处理报表,这简直是两个领域,相互之间的职能了解,可能仅为对方工作的冰山一角. 其次,无论任何行业的数据分析,其日常工作主要为以下几块: 数据获取——数
R语言绘图高质量输出
R语言通过支持Cairo矢量图形处理的类库,可以创建高质量的矢量图形(PDF,PostScript,SVG) 和 位图(PNG,JPEG, TIFF),同时支持在后台程序中高质量渲染.在ggplot2中,图片输出经过Cairo包处理后,输出个效果更好,可以输出成PDF格式,PDF格式体积小,同时可以储存为其他任何格式,随后再将PDF储存为eps格式并在Photoshop中打开做最终的调整,例如调整比例.色彩空间和dpi(一般杂志和出版社要求dpi=300以上)等.额外需要注意的是ggplot2中
R语言机器学习之caret包运用
在大数据如火如荼的时候,机器学习无疑成为了炙手可热的工具,机器学习是计算机科学和统计学的交叉学科, 旨在通过收集和分析数据的基础上,建立一系列的算法,模型对实际问题进行预测或分类. R语言无疑为我们提供了很好的工具,它正是计算机科学和统计科学结合的产物,开源免费, 相对于Python.Orange Canvas.Weka.Kinme这些免费的数据挖掘软件来说,更容易上手,统计图形也更加美观. 今天在这里和大家介绍一下Caret机器学习包的一些基本用法. 一.数据收集 下载kern
R语言-文本挖掘
---恢复内容开始--- 案例1:对主席的新年致辞进行分词,绘制出词云 掌握jieba分词的用法 1.加载包 library(devtools) library(tm) library(jiebaR) library(jiebaRD) library(tmcn) library(NLP)library(wordcloud2) 2.导入数据 news <- readLines('E:\\Udacity\\Data Analysis High\\R\\R_Study\\高级课程代码\\数据集\\第一
【转】基于R语言构建的电影评分预测模型
一,前提准备 1.R语言包:ggplot2包(绘图),recommenderlab包,reshape包(数据处理) 2.获取数据:大家可以在明尼苏达州大学的社会化计算研究中心官网上面下载这些免费数据集,网站链接为http://grouplens.org/datasets/movielens/,也可以通过网盘下载https://yunpan.cn/Oc6R9apvCnVXGc访问密码 e1af.这里包含了数据集和数据说明,该数据集是由943位用户对1682部电影的一
R语言可视化学习笔记之添加p-value和显著性标记
R语言可视化学习笔记之添加p-value和显著性标记 http://www.jianshu.com/p/b7274afff14f?from=timeline 上篇文章中提了一下如何通过ggpubr包为ggplot图添加p-value以及显著性标记,本文将详细介绍.利用数据集ToothGrowth进行演示 #先加载包 library(ggpubr) #加载数据集ToothGrowth data("ToothGrowth") head(ToothGrowth) ## len supp
【Introduction】R语言入门关键小结
写在前面:本博客为本人原创,严禁任何形式的转载!本博客只允许放在博客园(.cnblogs.com),如果您在其他网站看到这篇博文,请通过下面这个唯一的合法链接转到原文! 本博客全网唯一合法URL:https://www.cnblogs.com/acm-icpcer/p/11203182.html 这几天参加了学院组织的生物信息培训活动,有一个部分讲R语言入门,个人觉得受益良多,特将一些听课心得记录在此. Introduction R语言本质上和python.matlab一样是解释型语言,与编译型
R语言封装函数
R语言封装函数 原帖见豆瓣:https://www.douban.com/note/279077707/ 一个完整的R函数,需要包括函数名称,函数声明,函数参数以及函数体几部分. 1. 函数名称,即要编写的函数名称,这一名称就作为将来调用R函数的依据.2. 函数声明,函数名称 <- function, 即声明该对象的类型为函数.3. 函数参数,这里是输入的数据,函数参数是一个虚拟出来的一个对象.函数参数所等于的数据,就是在函数体内部将要处理的值,或者对应的数据类型. 函数体内部的程序语句进行数据
最棒的7种R语言数据可视化
最棒的7种R语言数据可视化 随着数据量不断增加,抛开可视化技术讲故事是不可能的.数据可视化是一门将数字转化为有用知识的艺术. R语言编程提供一套建立可视化和展现数据的内置函数和库,让你学习这门艺术.在可视化的技术实现之前,让我们先看看如何选择正确的图表类型. 选择正确的图表类型 基本的展现类型有如下四种: 1. 比较 2. 组成 3. 分布 4. 关系 为了确定哪一种类型的图表适合你的数据,我建议你应该回答一些问题比如, § 在一个图表中你想展现多少个变量? § 每个变量中你会显
用数据说话,R语言有哪七种可视化应用?
今天,随着数据量的不断增加,数据可视化成为将数字变成可用的信息的一个重要方式.R语言提供了一系列的已有函数和可调用的库,通过建立可视化的方式进行数据的呈现.在使用技术的方式实现可视化之前,我们可以先和雷锋网一起看看如何选择正确的图表类型. 作者 Dikesh Jariwala是一个软件工程师,并且在Tatvic平台上编写了一些很酷很有趣的程序.他用API编写了第一版Price Discovery,雷锋网对他所写的这篇文章做了编译,未经许可不得转载. 如何选择正确的图表类型 四种可选择的基本类型:
R 语言实战-Part 5-1笔记
R 语言实战(第二版) part 5-1 技能拓展 ----------第19章 使用ggplot2进行高级绘图------------------------- #R的四种图形系统: #①base:基础图形系统 #②grid图形系统: grid包,灵活,无完整绘图函数,适用开发者 #③lattice包:适用网格图形,即多变量/水平关系.基于grid包 #④ggplot2包:数据可视化利器 #前三者在基础安装中已包含,后三者使用时需显示加载 #1.以一个例子介绍ggplot2 library(g
热门专题
html keyframes 轮播图
django.中自定义分页器和封装分页器 的区别
不允许一个用户使用一个以上用户名与服务器多重连接
delphi中FindWindowEx
dockerfile 建mysql
ubuntu16安装torch1.5
数据库显示名称已被现已条件约束
如何让excel列数据用逗号隔开
VDHL中port map
.yaml转darknet .cfg
vue答题单选多选提交数据
Dapollo.configService 报错
如何不通过secureFX配置yum
theelementsofstyle 百度网盘
vc 编辑控件 赋值
panabit iwan 配置
SublimeText3 线怎么弄
linux分区使用率
ubuntu 显示md5
windows 2008远程桌面服务和rds