首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
R语言lapply并行运算
2024-09-08
R语言的并行运算(CPU多核)
通常R语言运行都是在CPU单个核上的单线程程序.有时我们会有需求对一个向量里的元素应用相同的函数,最终再将结果合并,并行计算可以大幅节约时间. 为了支持R的并行运算, parallel包已经被纳入了R的BASE库中,可以被直接调用,来实现在同一个CPU上利用多个核Core同时运算相同的函数. 版本一.Window版本的R程序 对比普通的LAPPLY函数和Parallel包下的多核makeCluster + parLapply函数效率 library(parallel) fun <- functi
R语言使用 multicore 包进行并行计算
R语言是单线程的,如果数据量比较大的情况下最好用并行计算来处理数据,这样会获得运行速度倍数的提升.这里介绍一个基于Unix系统的并行程序包:multicore. 我们用三种不同的方式来进行一个简单的数据处理: 我们从 1000 genome project 数据库下载了VCF文件,现在需要手动提取出每个allele的 allele frequency(AF)值(vcftools 可以很好的解决这个问题,但是假设我的vcf文件没有genotype, 或者我要实现一些个性化功能,那么可能要手动解决)
R 语言机器学习同步推进~
教材就是传说中的机器学习和R语言--中文版,大家可以去图书馆借来看看~~~,例子都是来自书上的 首先介绍一下KNN算法,KNN还好吧,说白了就是一个算距离的公式然后以统计的方式呈现出来,以二维平面为例,平面内已知n个区域,每个区域里面有m(n)个点,现在求一个不在n区域内的点与哪一个区域最近,额,为了"恰当",考虑较远的点的影响会覆盖较近点的影响和没有意义的重复计算,只取k(k<n)个较近点参与计算,这就是这个方法的原理了,简单粗暴~~问题还有就是在数据很大的时候怎么选取K值,书
R语言中的循环函数(Grouping Function)
R语言中有几个常用的函数,可以按组对数据进行处理,apply, lapply, sapply, tapply, mapply,等.这几个函数功能有些类似,下面介绍下这几个函数的用法. Apply 这是对一个Matrix或者Array进行某个维度的运算.其格式是: Apply(数据,维度Index,运算函数,函数的参数) 对于Matrix来说,其维度值为2,第二个参数维度Index中,1表示按行运算,2表示按列运算.下面举一个例子: m<-matrix(1:6,2,3) 构建一个简单的2行3列的矩
R语言之RCurl实现文件批量下载
前言: RCurl工具包的作者是由Duncan Temple Lang现任加州大学 U.C. Davis分校副教授.他曾致力于借助统计整合进行信息技术的探索.使用者通过RCurl可以轻易访问网页,进行相关数据的抓取以及下载,为数据分析提供原始素材.近年RCurl在数据分析业界中使用也越来越流行. Step1:安装RCurl install.packages('RCurl') Step2:代码实现 =========================== #利用RCurl包批量下载(抓取)文件 li
R语言学习笔记
向量化的函数 向量化的函数 ifelse/which/where/any/all/cumsum/cumprod/对于矩阵而言,可以使用rowSums/colSums.对于“穷举所有组合问题",可能需要combn/outer/lower.tri/expand.grid等函数.尽管apply可以显式消除循环,但它实际上是用R而不是C实现的,因此它通常并不能加速代码.然而,其他的apply函数,如lapply,对于加速代码非常帮助 环境和变量的作用域问题 在R语言中,函数被正式的称为“闭包”(clos
R语言演示功能
大家熟知的画图ggplot2包 library(ggplot2) #查看系统自带的qplot的函数演示 example(qplot) #R语言的基本对象 向量.矩阵.数组.数据框.列表 R语言的变量都是对象(包括函数),都有mode和lenght方法可以调用 #善用向量化的ifelse()函数 #R语言的下标从1开始,与C等语言不同 #R语言的矩阵元素默认按列存储 #善用apply, sapply, lapply(list apply)等函数,其中sapply(代表simplified appl
R语言之词云:wordcloud&wordcloud2安装及参数说明
一.wordcloud安装说明 install.packages("wordcloud"); 二.wordcloud2安装说明 install.packages("devtools"); devtools::install_github("lchiffon/wordcloud2",type="source") 错误提示:
R语言书籍的学习路线图
现在对R感兴趣的人越来越多,很多人都想快速的掌握R语言,然而,由于目前大部分高校都没有开设R语言课程,这就导致很多人不知道如何着手学习R语言. 对于初学R语言的人,最常见的方式是:遇到不会的地方,就跑到论坛上吼一嗓子,然后欣然or悲伤的离去,一直到遇到下一个问题再回来.当然,这不是最好的学习方式,最好的方式是——看书.目前,市面上介绍R语言的书籍很多,中文英文都有.那么,众多书籍中,一个生手应该从哪一本着手呢?入门之后如何才能把自己练就成某个方面的高手呢?相信这是很多人心中的疑问.有这种疑问的人
R 语言的优劣势是什么?
R 语言的优劣势是什么? 2015-05-27 程序员 大数据小分析 R,不仅仅是一种语言 本文原载于<程序员>杂志2010年第8期,因篇幅所限,有所删减,这里刊登的是全文. 工欲善其事,必先利其器,作为一个战斗在IT界第一线的工程师,C/C++.java.perl.python.ruby.php.javascript.erlang等等等等,你手中总有一把使用自如的刀,帮助你披荆斩棘. 应用场景决定知识的储备与工具的选择,反过来,无论你选择了什么样的工具,你一定会努力地把它改造成符合自己应
Machine Learning for hackers读书笔记(一)使用R语言
#使用数据:UFO数据 #读入数据,该文件以制表符分隔,因此使用read.delim,参数sep设置分隔符为\t #所有的read函数都把string读成factor类型,这个类型用于表示分类变量,因此将stringsAsFactors设置为False #header=F表示文件中并没有表头 #na.string='',表示把空元素设置为R中的特殊值NA,即将所有空元素读成NA ufo<-read.delim('ufo_awesome.tsv',sep='\t',stringsAsFactors
R语言笔记
R语言笔记 学习R语言对我来说有好几个地方需要注意的,我觉得这样的经验也适用于学习其他的新的语言. 语言的目标 我理解语言的目标就是这个语言是用来做什么的,为什么样的任务服务的,也就是设计这个语言的动机.比如C++是为系统编程服务的,java是为企业级应用服务的.R语言是用于统计分析,这样在R的系统中有大量的库(或者是package)用来实现特定的统计方法. 基本的数据类型 学习各个语言的第一步是了解这个语言的最基本的数据类型,这决定如何使用变量进行计算. 基本数据类型是直接由语言本身所定义的变
R语言编程艺术# 矩阵(matrix)和数组(array)
矩阵(matrix)是一种特殊的向量,包含两个附加的属性:行数和列数.所以矩阵也是和向量一样,有模式(数据类型)的概念.(但反过来,向量却不能看作是只有一列或一行的矩阵. 数组(array)是R里更一般的对象,矩阵是数组的一个特殊情形.数组可以是多维的.例如:一个三维数组可以包含行.列和层(layer),而一个矩阵只有行和列两个维度 1.创建矩阵 矩阵的行和列的下标都是从1开始,如:矩阵a左上角的元素记作a[1,1].矩阵在R中是按列存储的,也就是说先存储第一列,再存储第二列,以此类推. > y
利用R语言打造量化分析平台
利用R语言打造量化分析平台 具体利用quantmod包实现对股票的量化分析 1.#1.API读取在线行情2.#加载quantmod包3.if(!require(quantmod)){4. install.packages("quantmod")5.}6.#获取股票行情指数7.Quote=function(code){8. index=match(code,universes)9. temp=lapply(universes,get)10. return(temp[[index]])11
R语言从小木虫网页批量提取考研调剂信息
一.从URL读取并返回html树 1.1 Rcurl包 使用Rcurl包可以方便的向服务器发出请求,捕获URI,get 和 post 表单.比R socktet连接要提供更高水平的交互,并且支持 FTP/FTPS/TFTP,SSL/HTTPS,telnet 和cookies等.本文用到的函数是basicTextGatherer和getURL.想详细了解这个包的可以点击参考资料的链接. R命令: h <- basicTextGatherer( ) # 查看服务器返回的头
寻找与疾病相关的SNP位点——R语言从SNPedia批量提取搜索数据
是单核苷酸多态性,人的基因是相似的,有些位点上存在差异,这种某个位点的核苷酸差异就做单核苷酸多态性,它影响着生物的性状,影响着对某些疾病的易感性.SNPedia是一个SNP调査百科,它引用各种已经发布的文章,或者数据库信息对SNP位点进行描述,共享着人类基因组变异的信息.我们可以搜索某个SNP位点来寻找与之相关的信息,也可以根据相关疾病,症状来寻找相关的SNP. 初次使用SNPedia SNPedia主页网址为http://snpedia.com/index.php/SNPedia,比如我想
R语言数据分析利器data.table包 —— 数据框结构处理精讲
R语言data.table包是自带包data.frame的升级版,用于数据框格式数据的处理,最大的特点快.包括两个方面,一方面是写的快,代码简洁,只要一行命令就可以完成诸多任务,另一方面是处理快,内部处理的步骤进行了程序上的优化,使用多线程,甚至很多函数是使用C写的,大大加快数据运行速度.因此,在对大数据处理上,使用data.table无疑具有极高的效率.这里我们主要讲的是它对数据框结构的快捷处理. 和data.frame的高度兼容 DT = data.table(x=rep(c("b&
R语言基因组数据分析可能会用到的data.table函数整理
R语言data.table包是自带包data.frame的升级版,用于数据框格式数据的处理,最大的特点快.包括两个方面,一方面是写的快,代码简洁,只要一行命令就可以完成诸多任务,另一方面是处理快,内部处理的步骤进行了程序上的优化,使用多线程,甚至很多函数是使用C写的,大大加快数据运行速度.因此,在对大数据处理上,使用data.table无疑具有极高的效率.这里主要介绍在基因组数据分析中可能会用到的函数. fread 做基因组数据分析时,常常需要读入处理大文件,这个时候我们就可以舍弃read.ta
R语言︱LDA主题模型——最优主题数选取(topicmodels)+LDAvis可视化(lda+LDAvis)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:在自己学LDA主题模型时候,发现该模型有这么几个未解决的问题: 1.LDA主题数量,多少个才是最优的. 2.作出主题之后,主题-主题,主题与词语之间关联如何衡量. 于是在查阅几位老师做的成果之后,将他们的成果撮合在一起.笔者发现R里面目前有两个包可以做LDA模型,是lda包+topicmodels包,两个包在使用的过程中,需要整理的数
R语言︱情感分析—词典型代码实践(最基础)(一)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:词典型情感分析对词典要求极高,词典中的词语需要人工去选择,但是这样的选择会很有目标以及针对性.本文代码大多来源于<数据挖掘之道>的情感分析章节.本书中还提到了监督算法式的情感分析,可见博客: R语言︱情感分析-基于监督算法R语言实现笔记. 可以与博客 R语言︱词典型情感分析文本操作技巧汇总(打标签.词典与数据匹配等)对着看. 词典型
热门专题
syslinux6.03制作u盘启动盘
sqlserver CONVERT获取日期时间
mysql 创建function
oracle创建目录
vb.net调用网络接口
feign url注解
如果任务运行以下时间,停止任务 dos
138##Y2FMGB0an##$XJfINmB$/
C# task 异步执行 阻塞
StackExchange.Redis 永不过期
portainer 应用程序模板
flutter 分环境开发
C# 切换 字母输入法
cosbench 每秒6万请求
什么是INDICATOR QT
常见的content-type
abp vnext拦截器
stream抓包安装ca证书
荣耀畅玩5怎么root
centos 7重启后resolve.conf内容丢失