本例将展示使用多输出评估期来实现图像完成.目标是根据给出的上半部分人脸预测人脸的下半部分. 第一列展示的是真实的人脸,接下来的列分别展示了随机森林,K近邻,线性回归和岭回归对人脸下半部分的预测. # coding:utf-8 from pylab import * import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fetch_olivetti_faces from sklearn.uti
首先观看数据: l 数据的基本特征用 describe 描述每个基本特征 l 画图画出每个特征的基本统计图 应用import matplotlib.pylab as pl 画图显示 l 关于特征值特别大的数据集 :可能对结果产生权重的等级影响 所以尽量将数据进行归一化 特征值归一化的原因: 1:看数据范围看看是否可以归一化 Aum 归一化 虽然等级已经有过归一化这个方向: l :看看数据是否完整() 想到对后续目标的完整度处理 由于一般的模型对于空值来讲不符合模型的,
Text classifcation with Naïve Bayes In this section we will try to classify newsgroup messages using a dataset that can be retrieved from within scikit-learn. This dataset consists of around 19,000 newsgroup messages from 20 different topics ranging
Image recognition with Support Vector Machines #our dataset is provided within scikit-learn #let's start by importing and printing its description import sklearn as sk import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fe
最近在学习机器学习,学习和积累和一些关于机器学习的算法,今天介绍一种机器学习里面各种分类算法的比较 #!/usr/bin/python # -*- coding: utf-8 -*- """ ===================== Classifier comparison ===================== A comparison of a several classifiers in scikit-learn on synthetic datasets. T
# -*- coding: utf-8 -*- """ Created on Thu Aug 11 18:54:12 2016 @author: Administrator """ import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.utils import shuffle import mahotas
Shuffle arrays or sparse matrices in a consistent way This is a convenience alias to resample(*arrays, replace=False) to do random permutations of the collections. Parameters: *arrays : sequence of indexable data-structures Indexable data-structures