https://stats.stackexchange.com/questions/156471/imagenet-what-is-top-1-and-top-5-error-rate Your classifier gives you a probability for each class. Lets say we had only "cat", "dog", "house", "mouse" as classes (in
上一篇文章我们引出了GoogLeNet InceptionV1的网络结构,这篇文章中我们会详细讲到Inception V2/V3/V4的发展历程以及它们的网络结构和亮点. GoogLeNet Inception V2 GoogLeNet Inception V2在<Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift>出现,最大亮点是提出了Batch Normal
深度神经网络繁多,各自的性能指标怎样? 实际应用中,在速度.内存.准确率等各种约束下,应该尝试哪些模型作为backbone? 有paper对各个网络模型进行了对比分析,形成了一个看待所有主要模型的完整视角,其分析结果可以在实践中提供指导和帮助. 这篇博客主要整合了其中3篇文章的结论,分别是 201605-An Analysis of Deep Neural Network Models for Practical Applications 201809-Analysis of deep neur
tensorflow 预训练模型列表 https://github.com/tensorflow/models/tree/master/research/slim Pre-trained Models Neural nets work best when they have many parameters, making them powerful function approximators. However, this means they must be trained on very l