首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
RNN 损失函数 导数
2024-10-24
关于 RNN 循环神经网络的反向传播求导
关于 RNN 循环神经网络的反向传播求导 本文是对 RNN 循环神经网络中的每一个神经元进行反向传播求导的数学推导过程,下面还使用 PyTorch 对导数公式进行编程求证. RNN 神经网络架构 一个普通的 RNN 神经网络如下图所示: 其中 \(x^{\langle t \rangle}\) 表示某一个输入数据在 \(t\) 时刻的输入:\(a^{\langle t \rangle}\) 表示神经网络在 \(t\) 时刻时的hidden state,也就是要传送到 \(t+1\) 时刻的值:\
实现Bidirectional LSTM Classifier----深度学习RNN
双向循环神经网络(Bidirectional Recurrent Neural Networks,Bi-RNN),Schuster.Paliwal,1997年首次提出,和LSTM同年.Bi-RNN,增加RNN可利用信息.普通MLP,数据长度有限制.RNN,可以处理不固定长度时序数据,无法利用历史输入未来信息.Bi-RNN,同时使用时序数据输入历史及未来数据,时序相反两个循环神经网络连接同一输出,输出层可以同时获取历史未来信息. Language Modeling,不适合Bi-RNN,目标是通过前
tensorflow初探
TensorFlow是一个采用数据流图,用于数值计算的开源软件库.自己接触tensorflow比较的早,可是并没有系统深入的学习过,现在TF在深度学习已经成了"标配",所以打算系统的学习一遍.在本篇文章中主要介绍TF的基础知识... 创建并运行图 首先创建 两个变量 import tensorflow as tf reset_graph() x = tf.Variable(3, name="x") y = tf.Variable(4, name="y&qu
学习笔记TF036:实现Bidirectional LSTM Classifier
双向循环神经网络(Bidirectional Recurrent Neural Networks,Bi-RNN),Schuster.Paliwal,1997年首次提出,和LSTM同年.Bi-RNN,增加RNN可利用信息.普通MLP,数据长度有限制.RNN,可以处理不固定长度时序数据,无法利用历史输入未来信息.Bi-RNN,同时使用时序数据输入历史及未来数据,时序相反两个循环神经网络连接同一输出,输出层可以同时获取历史未来信息. Language Modeling,不适合Bi-RNN,目标是通过前
tensorflow的一些基础用法
TensorFlow是一个采用数据流图,用于数值计算的开源软件库.自己接触tensorflow比较的早,可是并没有系统深入的学习过,现在TF在深度学习已经成了"标配",所以打算系统的学习一遍.在本篇文章中主要介绍TF的基础知识... 创建并运行图 首先创建 两个变量 import tensorflow as tf reset_graph() x = tf.Variable(3, name="x") y = tf.Variable(4, name="y&qu
[DeeplearningAI笔记]序列模型1.5-1.6不同类型的循环神经网络/语言模型与序列生成
5.1循环序列模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.5不同类型的循环神经网络 上节中介绍的是 具有相同长度输入序列和输出序列的循环神经网络,但是对于很多应用\(T_{x}和T_{y}\)并不一定相等. 在此节会介绍不同的能够处理不同问题的循环神经网络. 多对多循环神经网络 对于命名实体识别的问题中,RNN的输出和输入序列长度一致--\(T_{x}=T_{y}\). 则在每读一个单词时都输出预测的值\(\hat{y}\) 这是一个典型的多对多的问题. 多对一循环神经网络
L1正则化可以解决过拟合问题(稀疏解)
损失函数最小,也就是求极值点,也就是损失函数导数为0.上面也说了,如果d0+λ和d0-λ为异号的时候刚好为极值点,损失函数导数为0(w为0是条件).而对于L2正则化,在w=0时并不一定是极值点而是d0.这就说明了L1正则化更容易稀疏化.
2.9 logistic回归中的梯度下降法(非常重要,一定要重点理解)
怎么样计算偏导数来实现logistic回归的梯度下降法 它的核心关键点是其中的几个重要公式用来实现logistic回归的梯度下降法 接下来开始学习logistic回归的梯度下降法 logistic回归的公式 现在只考虑单个样本的情况,关于该样本的损失函数定义如上面第三个公式,其中a是logistic回归的输出,y是样本的基本真值标签值, 下面写出该样本的偏导数流程图 假设样本只有两个特征x1和x2 为了计算Z,我们需要输入参数w1和w2和b 因此在logistic回归中,我们要做的就是变换参数w
3、基于Python建立任意层数的深度神经网络
一.神经网络介绍: 神经网络算法参考人的神经元原理(轴突.树突.神经核),在很多神经元基础上构建神经网络模型,每个神经元可看作一个个学习单元.这些神经元采纳一定的特征作为输入,根据自身的模型得到输出. 图1 神经网络构造的例子(符号说明:上标[l]表示与第l层:上标(i)表示第i个例子:下标i表示矢量第i项) 图2 单层神经网络示例 神经元模型是先计算一个线性函数(z=Wx+b),接着再计算一个激活函数.一般来说,神经元模型的输出值是a=g(Wx+b),其中g是激活函数(sigmoid,tan
循环神经网络(RNN)模型与前向反向传播算法
在前面我们讲到了DNN,以及DNN的特例CNN的模型和前向反向传播算法,这些算法都是前向反馈的,模型的输出和模型本身没有关联关系.今天我们就讨论另一类输出和模型间有反馈的神经网络:循环神经网络(Recurrent Neural Networks ,以下简称RNN),它广泛的用于自然语言处理中的语音识别,手写书别以及机器翻译等领域. 1. RNN概述 在前面讲到的DNN和CNN中,训练样本的输入和输出是比较的确定的.但是有一类问题DNN和CNN不好解决,就是训练样本输入是连续的序列,且序列的长短不
学习笔记TF020:序列标注、手写小写字母OCR数据集、双向RNN
序列标注(sequence labelling),输入序列每一帧预测一个类别.OCR(Optical Character Recognition 光学字符识别). MIT口语系统研究组Rob Kassel收集,斯坦福大学人工智能实验室Ben Taskar预处理OCR数据集(http://ai.stanford.edu/~btaskar/ocr/ ),包含大量单独手写小写字母,每个样本对应16X8像素二值图像.字线组合序列,序列对应单词.6800个,长度不超过14字母的单词.gzip压缩,内容用T
深度学习之循环神经网络(RNN)
循环神经网络(Recurrent Neural Network,RNN)是一类具有短期记忆能力的神经网络,适合用于处理视频.语音.文本等与时序相关的问题.在循环神经网络中,神经元不但可以接收其他神经元的信息,还可以接收自身的信息,形成具有环路的网络结构. 循环神经网络的参数学习可以通过随时间反向传播算法来学习,即按照时间的逆序把误差一步步往前传递.而当输入序列比较长时,会产生梯度爆炸或梯度消失问题,这也叫做长期依赖问题.为了解决这个问题,门控机制被引入来改进循环神经网络,也就是长短期记忆网络(L
【神经网络篇】--RNN递归神经网络初始与详解
一.前述 传统的神经网络每个输入节点之间没有联系, RNN (对中间信息保留): 由图可知,比如第二个节点的输入不仅依赖于本身的输入U1,而且依赖上一个节点的输入W0,U0,同样第三个节点依赖于前两个节点的输入, 假设每一个节点分别代表着“我出生在中国,我说——”的一个预测,则“说”后面则是依赖于前面的说的每个单词的所有组合. xt表示第t,t=1,2,3...步(step)的输入 st为隐藏层的第t步的状态,它是网络的记忆单元. st=f(Uxt+Wst−1),其中f一般是非线性的激活函数.
Recurrent Neural Networks(RNN) 循环神经网络初探
1. 针对机器学习/深度神经网络“记忆能力”的讨论 0x1:数据规律的本质是能代表此类数据的通用模式 - 数据挖掘的本质是在进行模式提取 数据的本质是存储信息的介质,而模式(pattern)是信息的一种表现形式.在一个数据集中,模式有很多不同的表现形式,不管是在传统的机器学习训练的过程,还是是深度学习的训练过程,本质上都是在进行模式提取. 而从信息论的角度来看,模式提取也可以理解为一种信息压缩过程,通过将信息从一种形式压缩为另一种形式.压缩的过程不可避免会造成信息丢失. 笔者这里列举几种典型的体
深度学习之从RNN到LSTM
1.循环神经网络概述 循环神经网络(RNN)和DNN,CNN不同,它能处理序列问题.常见的序列有:一段段连续的语音,一段段连续的手写文字,一条句子等等.这些序列长短不一,又比较难拆分成一个个独立的样本来训练.那么RNN又是怎么来处理这类问题的呢?RNN就是假设我们的样本是基于序列的.比如给定一个从索引$0$到$T$的序列,对于这个序列中任意索引号$t$,它对应的输入都是样本$x$中的第$t$个元素$x^{(t)}$.而模型在序列索引号t位置的隐藏状态$h^{(t)}$则是由$x^{(t)}$和在
转:RNN(Recurrent Neural Networks)
RNN(Recurrent Neural Networks)公式推导和实现 http://x-algo.cn/index.php/2016/04/25/rnn-recurrent-neural-networks-derivation-and-implementation/ 2016-04-25 分类:Deep Learning / NLP / RNN 阅读(6997) 评论(7) 本文主要参考wildml的博客所写,所有的代码都是python实现.没有使用任何深度学习的工具,公式推导虽然枯燥,
RNN(Recurrent Neural Networks)公式推导和实现
RNN(Recurrent Neural Networks)公式推导和实现 http://x-algo.cn/index.php/2016/04/25/rnn-recurrent-neural-networks-derivation-and-implementation/ 2016-04-25 分类:Deep Learning / NLP / RNN 阅读(6997) 评论(7) 本文主要参考wildml的博客所写,所有的代码都是python实现.没有使用任何深度学习的工具,公式推导虽然枯燥,
RNN(recurrent neural network)学习笔记
参考:https://www.jianshu.com/p/9dc9f41f0b29 以及<白话深度学习与TensorFlow> 与前馈神经网络.卷积神经网络等不同之处在于,RNN具有一定的记忆暂存功能,模拟了大脑的记忆性.具体来说,就是把之前的输入产生的影响量化后与当前输入一起传递到网络中训练.因此,RNN可以有效解决上下文相关场景下的问题,如自然语言处理等等. RNN示意图及时间维度上的展开图如下: 其中,Xi为当前输入,hi为A模块对Xi处理得到的输出.对于一个输入序列X来说,某一个Xi
RNN梯度消失和爆炸的原因 以及 LSTM如何解决梯度消失问题
RNN梯度消失和爆炸的原因 经典的RNN结构如下图所示: 假设我们的时间序列只有三段, 为给定值,神经元没有激活函数,则RNN最简单的前向传播过程如下: 假设在t=3时刻,损失函数为 . 则对于一次训练任务的损失函数为 ,即每一时刻损失值的累加. 使用随机梯度下降法训练RNN其实就是对 . . 以及 求偏导,并不断调整它们以使L尽可能达到最小的过程. 现在假设我们我们的时间序列只有三段,t1,t2,t3. 我们只对t3时刻的 求偏导(其他时刻类似): 可以看出对于 求偏导并没有
TensorFlow(十一):递归神经网络(RNN与LSTM)
RNN RNN(Recurrent Neural Networks,循环神经网络)不仅会学习当前时刻的信息,也会依赖之前的序列信息.由于其特殊的网络模型结构解决了信息保存的问题.所以RNN对处理时间序列和语言文本序列问题有独特的优势.递归神经网络都具有一连串重复神经网络模块的形式.在标准的RNNs中,这种重复模块有一种非常简单的结构. 那么S(t+1) = tanh( U*X(t+1) + W*S(t)).tanh激活函数图像如下: 激活函数tanh把状态S值映射到-1和1之间. RN
RNN基础
RNN之所以称为循环神经网路,即一个序列当前的输出与前面的输出也有关.具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出. RNN的应用领域有很多, 可以说只要考虑时间先后顺序的问题都可以使用RNN来解决.这里主要说一下几个常见的应用领域: 自然语言处理(NLP): 主要有视频处理, 文本生成, 语言模型, 图像处理 机器翻译, 机器写小说 语音识别 图像描述生成 文本相似度
热门专题
uipath checkbox 选中
sprintf空格占位
vue-echarts绘制大小
cobalt strike 宏病毒
numpy修改元素值
navicat怎么创建bigint unsigned类型
oracle怎么打开执行字符串sql并循环
web按钮的4个状态
openssl 不可取代
nacos伪集群配置
vant中的dialog弹框
Windows Server 2012系统怎样添加美键盘
jquery 回写 input值不管用
mongodb分类并统计每一类语法redash
python实现danmaku
怎么把工程放到sourcetree
openvpn设置自动连接
javase所有的单词
jrebel破解 mac
java 随机生成3位数