Neural activities in V1 create a bottom-up saliency map 本文证明了人类的初级视皮层可以在视觉信息加工的非常早期阶段,生成视觉显著图,用以引导空间选择性注意的分布.这一发现挑战了传统注意理论,相关成果公布在神经科学注明期刊Neuron杂志上. 文章的通讯作者是北京大学感知与智能教育部重点实验室方方教授,第一作者是心理学系博士生张喜淋.研究合作者包括伦敦大学学院(University College London)李兆平教授和中科院生物物理所周
This is a highly-cited paper. The context aware saliency proposed based on four principles, which can be explained as follows: 1. Areas that have distinctive colors or patterns should obtain high saliency; 2. Frequently occurring features should be s
Spationtemporal Saliency Detection Using Textural Contrast and Its Applications Last Edit 2013/12/3 一点题外话: 最近才把研究方向定下来了,视频显著性.导师给了30篇相关文献,让我仔细研读,了解paper的思路.为了督促自己,要求自己将读过的文献都做一点相关的总结.因为CSDN博客不能设立私密空间,若有网友看到我写的东西,希望指正,毕竟我还是一个初学者,对于这个研究方向还是太熟悉,写这个
AUC_shuffled.m function [score,tp,fp] = AUC_shuffled(saliencyMap, fixationMap, otherMap, Nsplits, stepSize, toPlot) % saliencyMap is the saliency map % fixationMap is the human fixation map (binary matrix) % otherMap is a binary fixation map (like fi
calcNSSscore.m function [ score ] = calcNSSscore( salMap, eyeMap ) %calcNSSscore Calculate NSS score of a salmap % Usage: [score] = calcNSSscore ( salmap, eyemap ) % % score : an array of score of each eye fixation % salmap : saliency map. will be re
步骤1:先定义KLdiv函数: function score = KLdiv(saliencyMap, fixationMap) % saliencyMap is the saliency map % fixationMap is the human fixation map map1 = im2double(imresize(saliencyMap, size(fixationMap))); map2 = im2double(fixationMap); % make sure map1 and
Saliency Detection: A Spectral Residual Approach 题目:Saliency Detection: A Spectral Residual Approach 作者:Xiaodi Hou, Liqing Zhang 领域:显著性目标检测 类型:新视角, 新方法 概述 The ability of human visual system to detect visual saliency is extraordinarily fast and reliab
先看几张效果图吧 效果图: 可以直接测试的代码: 头文件: // Saliency.h: interface for the Saliency class.//////////////////////////////////////////////////////////////////////////===========================================================================// Copyright (c) 2009 R
laviewpbt 2014.8.4 编辑 Email:laviewpbt@sina.com QQ:33184777 最近闲来蛋痛,看了一些显著性检测的文章,只是简单的看看,并没有深入的研究,以下将研究的一些收获和经验共享. 先从最简单的最容易实现的算法说起吧: 1. LC算法 参考论文:Visual Attention Detection in Video Sequences Using Spatiotemporal Cues. Yun Zhai and Mubarak Shah. P
Awesome Deep Vision A curated list of deep learning resources for computer vision, inspired by awesome-php and awesome-computer-vision. Maintainers - Jiwon Kim, Heesoo Myeong, Myungsub Choi, Jung Kwon Lee, Taeksoo Kim We are looking for a maintainer
Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in this task according to this metric; authors are willing to reveal the method White background = authors are willing to reveal the method Grey background
单步检测方法分为两类:anchor-based如ssd.RetinaNet;2)Anchor-free 如DenseBox.UnitBox;anchor-based处理的尺度范围虽小,更精准:anchor-free范围较大,但检测微小尺度的能力低下.anchor-based和anchor-free方法的输出在定位方式和置信度得分方面差异显著.anchor-based方法,ground truth IOU >=0.5锚点被视为正训练样本.锚点框住的区域是人脸的置信度,而不是网络预测的回归框内是人脸