聚类算法K-means是硬聚类算法,是目标函数聚类算法的代表.K-means算法以欧式距离作为相似度测度,它是求对应某一初始聚类中心向量V最优分类,使得评价指标J最小.算法采用误差平方和准则函数作为聚类准则函数.其核心思想是:随机选定K(聚类数)个初始中心,然后根据这K个初始中心,将N个数据点根据欧氏距离进行聚类,每个数据点离哪个初始中心更近就归于此初始中心一类,直至聚类完成,再计算每个聚类的均值作为新的中心,然后再根据欧氏距离进行聚类,如此迭代下去,直至收敛(即重新计算的中心与前一次计算的中心