本文由厦门大学计算机系教师林子雨翻译,翻译质量很高,本人只对极少数翻译得不太恰当的地方进行了修改. [摘要]:Spanner 是谷歌公司研发的.可扩展的.多版本.全球分布式.同步复制数据库.它是第一个把数据分布在全球范围内的系统,并且支持外部一致性的分布式事务.本文描述了 Spanner 的架构.特性.不同设计决策的背后机理和一个新的时间 API,这个 API 可以暴露时钟的不确定性.这个 API 及其实现,对于支持外部一致性和许多强大特性而言,是非常重要的,这些强大特性包括:非阻塞的读.不采用
R-CNN论文翻译 Rich feature hierarchies for accurate object detection and semantic segmentation 用于精确物体定位和语义分割的丰富特征层次结构 2017-11-29 摘要 过去几年,在权威数据集PASCAL上,物体检测的效果已经达到一个稳定水平.效果最好的方法是融合了多种图像低维特征和高维上下文环境的复杂结合系统.在这篇论文里,我们提出了一种简单并且可扩展的检测算法,可以将mAP在VOC2012最
论文标题:Faster R-CNN: Down the rabbit hole of modern object detection 论文作者:Zhi Tian , Weilin Huang, Tong He , Pan He , and Yu Qiao 论文地址:https://tryolabs.com/blog/2018/01/18/faster-r-cnn-down-the-rabbit-hole-of-modern-object-detection/ 论文地址:Object detect
论文标题:Detecting Text in Natural Image with Connectionist Text Proposal Network 论文作者:Zhi Tian , Weilin Huang, Tong He , Pan He , and Yu Qiao 论文源代码的下载地址:https://github.com/tianzhi0549/CTPN 论文代码的下载地址:https://github.com/eragonruan/text-detection-ctpn 论文地址
论文标题:An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 论文作者: Baoguang Shi, Xiang Bai and Cong Yao 论文代码的下载地址:http://mc.eistar.net/~xbai/CRNN/crnn_code.zip 论文地址:https://arxiv.org/p
R-CNN论文翻译 <Rich feature hierarchies for accurate object detection and semantic segmentation> 用于精确物体定位和语义分割的丰富特征层次结构 文章出处:https://www.cnblogs.com/pengsky2016/. 摘要: 过去几年,在权威数据集PASCAL上,物体检测的效果已经达到一个稳定水平.效果最好的方法是融合了多种图像低维特征和高维上下文环境的复杂结合系统.在这篇论文里
SPPNet论文翻译 <Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition> Kaiming He 摘要: 当前深度卷积神经网络(CNNs)都需要输入的图像尺寸固定(比如224×224).这种人为的需要导致面对任意尺寸和比例的图像或子图像时降低识别的精度(因为要经过crop/warp).本文给网络配上一个叫做“空间金字塔池化”(spatial pyramid pooling,