对于复杂的数据类型,比如IP和GeoPoint,只是在elasticsearch中有效,用spark读取时会转换成常用的String类型. Geo types. It is worth mentioning that rich data types available only in Elasticsearch, such asGeoPoint or GeoShape are supported by converting their structure into the primitives
[Spark][Hive][Python][SQL]Spark 读取Hive表的小例子$ cat customers.txt 1 Ali us 2 Bsb ca 3 Carls mx $ hive hive> > CREATE TABLE IF NOT EXISTS customers( > cust_id string, > name string, > country string > ) > ROW FORMAT DELIMITED FIELDS TERMI
Spark与elasticsearch结合使用是一种常用的场景,小编在这里整理了一些Spark与ES结合使用的方法.一. write data to elasticsearch利用elasticsearch Hadoop可以将任何的RDD保存到Elasticsearch,不过有个前提其内容可以翻译成文件.这意味着RDD需要一个Map/JavaBean/Scala case classScala在Scala中只需要以下几步: Spark Scala imports Elasticsearch-ha
spark 2.4.3 spark读取hive表,步骤: 1)hive-site.xml hive-site.xml放到$SPARK_HOME/conf下 2)enableHiveSupport SparkSession.builder.enableHiveSupport().getOrCreate() 3) 测试代码 val sparkConf = new SparkConf().setAppName(getName) val sc = new SparkContext(sparkConf)
def main(args: Array[String]): Unit = { val conf = new SparkConf() conf.set("spark.master", "local") conf.set("spark.app.name", "spark demo") val sc = new SparkContext(conf); // 读取hdfs数据 val textFileRdd = sc.textFil