首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
spark sort算子
2024-11-05
Spark算子--SortByKey
转载请标明出处http://www.cnblogs.com/haozhengfei/p/076a31e7caab1316b07990c02ac65e9c.html SortByKey--Transformation类算子 代码示例
Spark操作算子本质-RDD的容错
Spark操作算子本质-RDD的容错spark模式1.standalone master 资源调度 worker2.yarn resourcemanager 资源调度 nodemanager在一个集群中只能有一个资源调度,如果有两个资源调度的话,master和resourcemanager之间是不通信的,master分配某个资源,resourcemanager是不知道的一个application对应一个driver,driver是用来分配任务的 流程示意分布式文件系统(File system)加
Spark RDD概念学习系列之Spark的算子的分类(十一)
Spark的算子的分类 从大方向来说,Spark 算子大致可以分为以下两类: 1)Transformation 变换/转换算子:这种变换并不触发提交作业,完成作业中间过程处理. Transformation 操作是延迟计算的,也就是说从一个RDD 转换生成另一个 RDD 的转换操作不是马上执行,需要等到有 Action 操作的时候才会真正触发运算. 2)Action 行动算子:这类算子会触发 SparkContext 提交 Job 作业. Action 算子会触发 Spark 提交作业(Jo
Spark RDD概念学习系列之Spark的算子的作用(十四)
Spark的算子的作用 首先,关于spark算子的分类,详细见 http://www.cnblogs.com/zlslch/p/5723857.html 1.Transformation 变换/转换算子 1.map算子 2.flatMap算子 3.mapPartitions算子 4.union算子 5.cartesian算子 6.grouBy算子 7.filter算子 8.sample算子 9.cache算子 10.persist算子 11.mapValues算子 12.combineByKey
Spark RDD 算子总结
Spark算子总结 算子分类 Transformation(转换) 转换算子 含义 map(func) 返回一个新的RDD,该RDD由每一个输入元素经过func函数转换后组成 filter(func) 过滤, 返回一个新的RDD, 该RDD由经过func函数计算后返回值为true的输入元素组成 flatMap(func) 类似于map,但是每一个输入元素可以被映射为0或多个输出元素(所以func应该返回一个序列,而不是单一元素) mapPartitions(func) 类似于map,但独立地在R
Spark 初级算子
#常用Transformation(即转换,延迟加载) #通过并行化scala集合创建RDD val rdd1 = sc.parallelize(Array(1,2,3,4,5,6,7,8)) #查看该rdd的分区数量 rdd1.partitions.length val rdd1 = sc.parallelize(List(5,6,4,7,3,8,2,9,1,10)) val rdd2 = sc.parallelize(List(5,6,4,7,3,8,2,9,1,10)).map(_
Spark RDD算子介绍
Spark学习笔记总结 01. Spark基础 1. 介绍 Spark可以用于批处理.交互式查询(Spark SQL).实时流处理(Spark Streaming).机器学习(Spark MLlib)和图计算(GraphX). Spark是MapReduce的替代方案,而且兼容HDFS.Hive,可融入Hadoop的生态系统,以弥补MapReduce的不足. 2. Spark-Shell spark-shell是Spark自带的交互式Shell程序,用户可以在该命令行下用scala编写spark
列举spark所有算子
一.RDD概述 1.什么是RDD RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度. 2.RDD属性 (1). 一组分片(Partition),即数据集
Spark Sort Based Shuffle内存分析
分布式系统里的Shuffle 阶段往往是非常复杂的,而且分支条件也多,我只能按着我关注的线去描述.肯定会有不少谬误之处,我会根据自己理解的深入,不断更新这篇文章. 前言 借用和董神的一段对话说下背景: shuffle共有三种,别人讨论的是hash shuffle,这是最原始的实现,曾经有两个版本,第一版是每个map产生r个文件,一共产生mr个文件,由于产生的中间文件太大影响扩展性,社区提出了第二个优化版本,让一个core上map共用文件,减少文件数目,这样共产生corer个文件,好多了,但中间文
Spark常用算子-KeyValue数据类型的算子
package com.test; import java.util.ArrayList; import java.util.List; import java.util.Map; import org.apache.spark.Partitioner; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDD;
Spark常用算子-value数据类型的算子
package com.test; import java.util.ArrayList; import java.util.Arrays; import java.util.Iterator; import java.util.List; import java.util.Map; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.ap
spark常用算子总结
算子分为value-transform, key-value-transform, action三种.f是输入给算子的函数,比如lambda x: x**2 常用算子: keys: 取pair rdd的key部分 values: 取pair rdd的value部分 map: f作用于每个元素 flatMap: f作用于每个元素.输出list,然后对list压平 mapValues: f作用于pair rdd的value部分 flatMapValues: f作用于pair rdd的value部分,
spark过滤算子+StringIndexer算子出发的一个逻辑bug
问题描述: 在一段spark机器学习的程序中,同时用到了Filter算子和StringIndexer算子,其中StringIndexer在前,filter在后,并且filter是对stringindexer的输出列设置了过滤条件,filter算子之后将数据集灌到随机森林中(试过决策树分类和逻辑回归同样都会触发bug,与filter后面具体是什么算子没有关系),然后再运行的时候报了一个错,错误的原因是源数据中出现了stringindexer模型中没有的标签值.用过stringindexer这个算子
java实现spark常用算子之Union
import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.VoidFunction;import java.util.Arrays;import java.util.List; /** * union 算子: * 取两个RD
java实现spark常用算子之TakeSample
import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.api.java.JavaSparkContext; import java.util.Arrays;import java.util.List; /** * sampleTake 算子: * 先 sample 再 take * 第一个参数:是否可以重复 * 第二个参数:返回take(n) * 第三个
java实现spark常用算子之SortByKey
import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaPairRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.Function2;import org.apache.spark.api.java.function.VoidFunction;import scala.T
java实现spark常用算子之Sample
import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.VoidFunction; import java.util.Arrays;import java.util.List; /** *sampleoperator(wi
java实现spark常用算子之SaveAsTextFile
import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.Function; import java.util.Arrays;import java.util.List; /** * saveastextfile 算子: *
java实现spark常用算子之Repartitions
import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.Function2;import org.apache.spark.api.java.function.VoidFunction; import java.util.
java实现spark常用算子之Reduce
import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.Function2; import java.util.Arrays;import java.util.List; /** * reduce(fun) 算子: * 每
java实现spark常用算子之ReduceByKey
import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaPairRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.Function2;import org.apache.spark.api.java.function.VoidFunction;import scala.T
热门专题
JoinPoint获取参数名
C# 给企业微信发送消息
linux挂载磁盘在哪里
计算多元函数的Hessian矩阵
vs2019番茄助手
FPGA引脚如何判断IO信号
tusimple_lanenet_vgg下载
postgres设置用户的默认搜索路径
excel图片复制到word过来英文变形
tp6 qrcode 添加背景图
mvnrepository.com 介绍 解释
java 上传excel文件并修改内容
ios team profile 过期
sqlsugar like 替换特殊符号
steam os为什么继续arch
excel日期转换格式点一下才行
poi 空单元格怎么获取 cellstyle
vue使用webuploader 下载
input.select()报错
cloud.jar中没有主清单属性