RCNN: RCNN(Regions with CNN features)是将CNN方法应用到目标检测问题上的一个里程碑,由年轻有为的RBG大神提出,借助CNN良好的特征提取和分类性能,通过RegionProposal方法实现目标检测问题的转化. 算法可以分为四步: 1)候选区域选择 Region Proposal是一类传统的区域提取方法,可以看作不同宽高的滑动窗口,通过窗口滑动获得潜在的目标图像,关于Proposal大家可以看下SelectiveSearch,一般Candidate选项为2k个
通过StartDT AI Lab专栏之前多篇文章叙述,相信大家已经对计算机视觉技术及人工智能算法在奇点云AIOT战略中的支撑作用有了很好的理解.同样,这种业务牵引,技术覆盖的模式也收获了市场的良好反响,而奇点云AIOT在市场的大面积铺开又给算法部门带来了新的挑战,也就是如何进一步的降低算法端计算成本,从而提升业务利润. 目标很简单,就是将现有算法模型在不降低准确性的前提下,缩小模型尺寸以节省硬件存储成本,简化模型计算复杂度,以节省硬件计算成本.这又小又快的模型优化要求,我们一般统称为模型加速问题
数据集做好后,训练程序为/examples/ssd/ssd_pascal.py,运行之前,我们需要修改相关路径代码,主要是训练路径的修改和关于自己数据集参数的一些修改. cd /examples/ssd先复制一份sd_pascal.py, 再打开,把里面的路径修改为自己的.具体有如下:train_data路径:test_data路径:save_dir.snapshot_dir.job_dir.output_result_dir路径:没有的话就仿照voc0712的文件夹进行建立.name_size