首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
stm32寄存器组r0-r15 的地址
2024-11-09
Cortex-M3 R0~R15寄存器组 & 特殊功能寄存器组
[R0~R15寄存器组] Cortex-M3处理器拥有R0~R15的寄存器组,如: [R0~R12通用寄存器]R0~R12都是32位通用寄存器,用于数据操作.其中: R0~R7为低组寄存器,所有的指令都可以访问. R8~R12为高组寄存器,只有32位Thumb2指令和很少的16位Thumb指令能访问. [R13堆栈指针SP]Cortex-M3拥有两个堆栈指针,然而它们是banked,任一时刻只能使用其中的一个. 主堆栈指针(MSP):复位后缺省使用的堆栈指针,用于操作系统内核以及异常处理(包括中
stm32寄存器版学习笔记03 外部中断
stm32的每个I/O口都可以作为中断输入,要把I/O口设置为外部中断输入,必须将I/O口设置为上拉/下拉输入 或 浮空输入(但浮空的时候外部一定要带上拉或下拉电阻,否则可能导致 中断不停的触发),干扰大时,上拉/下拉输入模式也建议使用外部上拉/下拉电阻. 1.设置外部中断 的步骤 ①初始化I/O口为输入 参见 stm32寄存器版学习笔记01 GPIO口的配置. ②开启I/O口复用时钟, 设置I/O口与中断线的映射关系 这一步在函数void Ex_NVIC_Config(u8 GPIOx,u8
Cortex-M3的异常/中断屏蔽寄存器组
转自 1. Cortex-M3的异常/中断屏蔽寄存器组 注:只有在特权级下,才允许访问这3个寄存器. 名 字 功能描述 PRIMASK 只有单一比特的寄存器.置为1后,就关掉所有可屏蔽异常,只剩下NMI和硬Fault可以响应.默认值是0,表示没有关闭中断. FAULTMASK 只有单一比特的寄存器.置为1后,只有NMI可以响应.默认值为0,表示没有关异常. BASEPRI 该寄存器最多有9位(由表达优先级的位数决定).定义了被屏蔽优先级的阈值.当它被设置为某个值后,所有优先级号大于等于此值的中断
stm32寄存器版学习笔记07 ADC
STM32F103RCT有3个ADC,12位主逼近型模拟数字转换器,有18个通道,可测量16个外部和2个内部信号源.各通道的A/D转换可以单次.连续.扫描或间断模式执行. 1.通道选择 stm32把ADC转换分成2个通道组:规则通道组相当于正常运行的程序:注入通道组相当于中断.程序初始化阶段设置好不同的转换组,系统运行中不用变更循环转换的配置,从而达到任务互不干扰和快速切换. 有16个多路通道.可以把转换组织成两组:规则组和注入组.在任意多个通道上以任意顺序进行的一系列转换构成成组转换.例如,可
stm32寄存器版学习笔记06 输入捕获(ETR脉冲计数)
STM32外部脉冲ETR引脚:TIM1-->PA12;TIMER2-->PA0:TIMER3-->PD2;TIMER4-->PE0… 1.TIM2 PA0计数 配置步骤 ①开启TIM2时钟,配置PA0输入 APB1外设复位寄存器 (RCC_APB1RSTR) APB2外设时钟使能寄存器(RCC_APB2ENR) 置1开启.清0关闭. Eg:RCC->APB1ENR|=1<<0; //使能TIM2时钟 RCC->APB2ENR|=1<<2;
STM32寄存器深入分析
可能很多刚开始学习STM32的小伙伴都有一个疑惑,创建项目时会需要很多头文件,导致学习过程中很难明白那些头文件的作用,虽然知道头文件都是对寄存器的封装,但是怎么封装的就不知道了.这里我以led灯为试验,不需要头文件,自己跟着寄存器的说明写一个简单的demo,应该能加深小伙伴们对STM32的理解. 一.有效地址 C语言功底相对差一些的小伙伴可能看不明白"STM32的寄存器手册",不明白手册中的地址说明是什么,比如手册中的两个寄存器,他们的偏移地址都是0x00,这样直接给0x00这个寄存器
stm32寄存器版学习笔记05 PWM
STM32除TIM6和TIM7外都可以产生PWM输出.高级定时器TIM1和TIM8可以同时产生7路PWM,通用定时器可以产生4路PWM输出. 1.TIM1 CH1输出PWM配置步骤 ①开启TIM1时钟,配置PA8为复用输出 APB2外设时钟使能寄存器(RCC_APB2ENR) APB1外设复位寄存器 (RCC_APB1RSTR) 置1开启.清0关闭. Eg:RCC->APB2ENR|=1<<11; //使能TIM1时钟 配置I/O口: 参见stm32寄存器版学习笔记01 GPIO口的配置
stm32寄存器版学习笔记08 DMA
DMA(Direct Memory Access),直接存储器访问.DMA传输方式无需CPU直接控制传输,通过硬件为RAM与I/O设备开辟一条直接传送数据的通路,使CPU效率大大提高.stm32f103有2个DMA控制器,DMA1有7个通道,DMA2有5个通道,专门用来管理来自外设对存储器的访问请求,还有一个仲裁器来协调各个DMA请求的优先权. 1.DMA各通道请求 从外设产生的DMA请求通过逻辑"或"输入到DMA控制器,这就意味着同时只能有一个请求有效. 例如,串口1发送的DMA,就
stm32寄存器版学习笔记04 定时计数器中断
STM32共有8个定时计数器,其中TIME1和TIME8是高级定时器,TIME2~TIME5是通用定时器,TIME6和TIME7是基本定时器.以TIME3为例总结定时计数器的基本用法. 1.TIM3的配置步骤 ①TIM3时钟使能 APB1外设复位寄存器 (RCC_APB1RSTR) 置1开启.清0关闭. 第一位对TIM3的时钟使能 Eg:RCC->APB1ENR|=1<<1; //使能TIM3时钟 APB2外设时钟使能寄存器(RCC_APB2ENR) ②设置TIM3_ARR和TIM3_P
stm32寄存器版学习笔记02 串口通信
stm32F103RCT6提供5路串口.串口的使用,只要开启串口时钟,设置相应的I/O口的模式,然后配置下波特率.数据位长度.奇偶校验等信息,即可使用. 1.串口的配置步骤 ①串口时钟使能 APB2外设时钟使能寄存器(RCC_APB2ENR) 置1开启.清0关闭. 第14位对串口1的时钟使能 Eg:RCC->APB2ENR| = 1<<14; //使能串口1时钟 除串口1的时钟使能在RCC_APB2ENR寄存器,其余的时钟使能位在寄存器RCC_APB1ENR寄存器,而APB2(72M)的
对stm32寄存器的理解(个人理解,大神轻喷)
学习了stm32有一年了,今天想来写写自己对寄存器的理解,帮助那些有志学习stm32的朋友们少走一些弯路. --------------------------------------------------------------------------------------------------------------------------------------- 问题一:stm32位寄存器是什么意思? 32指的是二进制的32位,也就是每一个寄存器是有32位二进制组成(当然部分寄存器
stm32寄存器版学习笔记01 GPIO口的配置(LED、按键)
STM32的I/O口可以由软件配置成如下8种模式:输入浮空.输入上拉.输入下拉.模拟输入.开漏输出.推挽输出.推挽式复用功能及开漏复用功能.每个I/O口由7个寄存器来控制:配置模式的端口配置寄存器CRL和CRH(模式.速度):数据寄存器IDR和ODR:置位/复位寄存器BSRR:复位寄存器BRR:锁存寄存器LCKR. I/O口模式: GPIO的8种模式 通用输出 推挽输出(Push-Pull) 可以输出高.低电平,连接数字器件 开漏输出(Open-Drain) 开漏引脚不连接外部的上拉电阻时,
STM32 寄存器库和固件库
寄存器和固件库开发的差别和联系 固件库就是函数的集合,固件库函数的作用是向下负责与寄存器直接打交道.向上提供用户函数调用的接口(API). 在 51 的开发中我们经常的作法是直接操作寄存器,比方要控制某些 IO 口的状态,我们直 接操作寄存器: P0=0x11; 而在 STM32 的开发中,我们相同能够操作寄存器: GPIOx->BRR = 0x0011; 这样的方法当然能够,可是这样的方法的劣势是你须要去掌握每一个寄存器的使用方法.你才干正确使用 STM32,而对于 STM32 这样的级别的
stm32寄存器版学习笔记10 SPI
SPI(Serial Peripheral Interface),串行外围设备接口.SPI是一种高速的.全双工.同步的通信总线. SPI接口一般使用4条线通信: MISO 主设备数据输入,从设备数据输出 MOSI 主设备数据输出,从设备数据输入 SCLK 时钟信号,有主设备产生 CS 从设备片选信号,有主设备控制 SPI模块为了和外设进行数据交换,根据外设工作要求,其输出串行同步时钟极性和相位可以进行配置.SPI_CR寄存器的CPOL(时钟极性)位,控制在没有数据传输时时钟的空闲状态电平,此位对
stm32寄存器版学习笔记09 IIC
I²C(Inter-Integrated Circuit)总线是一种两线式串行总线,用于连接微控制器及其外设,是由数据线SDA和时钟SCL构成的串行总线,可发送和接收数据. IIC总线在传送数据过程中共有3种类型信号,分别是开始信号.结束信号和应答信号. SCL SDA 开始信号 高电平 由高电平向低电平跳变,开始传送数据 结束信号 高电平 由低电平向高电平跳变,结束传送数据 应答信号 接收数据的IC在接收到8bit数据后向发送数据的IC发出特定的低电平脉冲,表示已经收到数据:CPU向受控单
STM32学习笔记(六) SysTick系统时钟滴答实验(stm32中断入门)
系统时钟滴答实验很不难,我就在面简单说下,但其中涉及到了STM32最复杂也是以后用途最广的外设-NVIC,如果说RCC是实时性所必须考虑的部分,那么NVIC就是stm32功能性实现的基础,NVIC的难度并不高,但是理解起来还是比较复杂的,我会在本文中从实际应用出发去说明,当然最好去仔细研读宋岩翻译的<Cortex-M3权威指南>第八章,注意这不是一本教你如何编写STM32代码的工具书,而是阐述Cortex-M3内核原理的参考书,十分值得阅读. SysTick系统时钟的核心有两个,外设初始化和S
MCS-51系列特殊功能寄存器(摘录)
MCS-51系列特殊功能寄存器(80H~FFH) 1. P0 (80H) P0.7 P0.6 P0.5 P0.4 P0.3 P0.2 P0.1 P0.0 2.SP 栈指针(81H) 3.DPTR 数据指针(由DPH和DPL组成) DPL 数据指针低八位 (82H) DPH 数据指针高八位 (83H) 4.PCON 电源管理寄存器 (87H) SMOD -- -- -- GF1 GF0 PD IDL SMOD :波特率倍增位.SMOD=0时,不变:SMOD=1时,倍增. GF1,GF0 :通用标志
MCS-51系列特殊功能寄存器(摘抄)
1. P0 (80H) P0.7 P0.6 P0.5 P0.4 P0.3 P0.2 P0.1 P0.0 2.SP 栈指针(81H) 3.DPTR 数据指针(由DPH和DPL组成) DPL 数据指针低八位 (82H) DPH 数据指针高八位 (83H) 4.PCON 电源管理寄存器 (87H) SMOD -- -- -- GF1 GF0 PD IDL SMOD :波特率倍增位.SMOD=0时,不变:SMOD=1时,倍增. GF1,GF0 :通用标志位. PD :掉电方式位.PD=1时,进入掉电方式
ARM寄存器的8种寻址方式01
一.立即数寻址 操作数由指令本身给出 MOV r0,#0x0F //是所有寻址方式里面速度最快的,但是受到合法立即数的限制 立即数要求以#和$开头 十六进制,#后跟0x:十进制,#后直接加:八进制,#后跟0:二进制,#后跟0b 什么是合法立即数?ARM中要求立即数是一个8位的常数循环左移偶数位得到的数值.也就是说只要是在0x00~0xFF中的一个数,或者是在这个区间中的一个数循环左移偶数位的数值,都是合法立即数. 给大家一个快速判断方法: 1.如果该数在0x00~0xFF之间,它是一个合法立即数
ARM CORTEX-M3 内核架构理解归纳
ARM CORTEX-M3 内核架构理解归纳 来源:网络 个人觉得对CM3架构归纳的非常不错,因此转载 基于<ARM-CORTEX M3 权威指南>做学习总结: 在我看来,Cotex-M3内核的主要包括:嵌套向量中断控制器(NVIC),取值单元,指令译码器,算数逻辑单元(ALU),寄存器组,存储器映射(4GB统一编址各区域功能的划分与界定),对于开发者而言,其实主要关注的主要分为三大块: .寄存器组2.地址功能划分映射3.中断机制(NVIC). )寄存器组 组32位寄存器: R0--R
热门专题
html 高亮某段话
win 影子账户 解决
video标签在微信中打不开
qt的setHidden
ubuntu如何给ko签名
b/s信息系统如何开发
flume 对接http 接口
cocosstudio text尺寸
mysql两个datetime相减是什么
Jeecg-Boot 后台服务API接口文档设置秘钥
bootstrap-datetimepicker 语言
虚拟机磁盘扩容的两种方式是什么
proj与pgsql
el-input type=textarea 剩余字符
redis 集群网络耗时监控
微信小程序 图片居中
CentOS 8.4升级内核rpm
datagridview控件实现查询数据表的内容在空间中显示
html如何实现交互动画
css table 列对齐