首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
STm32 IO复位电平
2024-08-30
STM32单片机复位后GPIO电平状态
stm32单片机gpio共有八种工作模式,如下图: stm32单片机是一个低功耗的处理器,当复位以后,gpio默认是高阻状态,也就是浮空输入.这样的好处是: 1.降低了单片机的功耗 2.把gpio模式的选择权交给用户 3.在用户使用的时候,都会在gpio外加一个上拉或下拉电阻,这样当单片机复位以后就能够清楚的知道引脚的电平情况
STM32软件复位(基于库文件V3.5)
源:STM32软件复位(基于库文件V3.5) void SoftReset(void) { __set_FAULTMASK(); // 关闭所有中端 NVIC_SystemReset();// 复位 } //在官方软件库的 core_cm3.h 文件里 直接提供了 系统复位的函数 static __INLINE void NVIC_SystemReset(void) { SCB->AIRCR = ((0x5FA << SCB_AIRCR_VECTKEY_Pos) | (SCB->A
STM32 IO口双向问题
源: STM32 IO口双向问题
STM8S PWM输出停止后 IO口电平输出
STM8S有许多定时器支持PWM输出,但在停止定时器后,IO口电平到底是多少呢?或高或低. 因此,为了确定PWM停止输出电平后其对应的值是多少,我们在停止PWM输出时需要对CCMR1寄存器进行设置. 例如, TIM2_Cmd(DISABLE); /*停止PWM后将电平拉为低电平*/ TIM2_ForcedOC1Config(TIM2_FORCEDACTION_INACTIVE); GPIO_WriteLow(GPIOC, GPIO_PIN_5); 即可. 恢复时候需要重新将定时器初始化 TIM2
stm32之复位与待机唤醒
一.复位 stm32复位有三种类型,分别为系统复位.电源复位和备份域复位. 其中系统复位又分为: NRST引脚低电平(外部复位) 窗口看门狗计数结束 独立看门狗计数结束 软件复位 低功耗管理复位 二.待机唤醒 复位中提到的低功耗管理复位,其实就是在进入低功耗模式下产生的复位. 低功耗模式分为三种模式: 睡眠模式(CM内核停止工作,外设仍在运行) 停止模式(所有时钟都停止) 待机模式(1.2V域断电) 根据具体的情况,选择不同的模式.这里以待机模式为例,stm32进入待机模式后,当检测到外部复位(
STM32 软件复位并模拟USB拔插
最近做了个USB跟上位机的通信,需要软件对MCU进行复位,复位后如果USB没有拔插,PC就不会重新枚举USB为了解决这个问题,我做了软件复位跟,软件模拟USB拔插. 这里我用的是HAL库的软件复位,复位前先把中断关掉,再复位,代码如下: __set_FAULTMASK(); //关中断 NVIC_SystemReset(); //复位 至于怎么实现模拟USB拔插,则只需要在USB初始化前把PA12进行一个拉低——延时——拉高的操作即可,一般PC机可以通过检查USB的D+引脚来判断USB是否有变化
stm32中断无电平触发的解决办法
这几天在用stm32读取FPGA中FIFO里的数据,遇到了不少的问题.其中有个自己觉得比较好玩的问题,就拿出来写写.其实这个问题也比较简单,开始我觉得没必要拿出来写,不过,想想后觉得还是写写吧,就当做是打发一下时间. 问题就是,stm32的中断没有电平触发方式.网上也看了看,有人为电平触发的中断没有什么意义,没必要用.也有人的想法相反.接下来我就不废话了,直接开始讲我遇到的这个问题以及怎么解决的吧. 说一下背景.我的任务是用stm32读取FPGA中FIFO里的数据.至于这些数据怎么来的,怎么写进
xilinx和altera复位电平
xilinx使用高电平复位 altera使用低电平复位 原因:Xilinx 寄存器的SR控制端是高电平有效的.如果RTL代码采用了低电平有效的复位模式,综合器将在复位信号驱动寄存器SR控制端之前的插入一个反相器(interver).你必须使用一个查找表(look up table)来实现反向器,以利用LUT的输入端口.低电平有效的控制信号带来的额外的逻辑可能拉长了执行时间(runtime),将导致更低的FPGA资源利用率,也将影响时序和功耗. altera刚好相反 另从两者生成ip核可见,xil
stm32 IO口八种模式区别
初学STM32,遇到I/O口八种模式的介绍,网上查了一下资料,下面简明写出这几种模式的区别,有不对的地方请大家多多指正! 上拉输入模式:区别在于没有输入信号的时候默认输入高电平(因为有弱上拉).下拉输入模式:区别在于没有输入信号的时候默认输入低电平(因为有弱下拉).浮空输入模式:顾名思义也就是输入什么信号才是什么信号,对于浮空输入要保证有明确的输入信号. 开漏输出模式:当写1时,输出不被激活,电平无变化,只有外部加个上拉电阻,输出端口才为1 当写0时,输出为0. 所以如果外部有上拉电阻的话,写1
stm32 io操作 头文件规范
在stm32众多项目开发中,有太多的对io进行操作,若置1或清0,使用官方库提供的函数,固然方便,规范,但是需要包含标准的库,尺寸较大,还得处理不同版本兼容问题,包括io初始化也太繁琐,于是操作原子等例程进行精简, 初始化如下,变得如此简单:适用于stm32f和stm32L void Init_Io(void){ JTAG_Set(SWD_ENABLE); //开启SWD RCC->APB2ENR|=1<<6;//先使能外设PORTE时钟 RCC->APB2ENR|=1<&l
STM32:获取复位源,软件复位
RCC CSR寄存器会存储复位标示,可通过它来知道复位原因,来源: if(RCC_GetFlagStatus(RCC_FLAG_PINRST)) printf("PINRST\r\n"); if(RCC_GetFlagStatus(RCC_FLAG_PORRST)) printf("PORRST\r\n"); if(RCC_GetFlagStatus(RCC_FLAG_SFTRST)) printf("SFTRST\r\n"); if(RCC_G
3.STM32复位系统
一.概念 复位: 使系统结束当前运行状态,重新开始运行,并根据复位种类,将系统的寄存器(特定的寄存器除外)恢复到默认状态. 二.复位的种类 1.系统复位 将除了系统后备区域寄存器(BKP)和时钟控制寄存器的RCC_CSR标志位以外的所有寄存器恢复为复位值. <1>.NRST引脚上的低电平<外部复位> 复位电路构成,复位电路一般需要一个电阻和一个电容就足够了,一个10K的上拉电阻还有一个106的电容 .
STM32中IO口的8中工作模式
该文摘自:http://blog.csdn.net/kevinhg/article/details/17490273 一.推挽输出:可以输出高.低电平,连接数字器件:推挽结构一般是指两个三极管分别受两个互补信号的控制,总是在一个三极管导通的时候另一个截止.高低电平由IC的电源决定. 推挽电路是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小.效率高.输出既可以向负载灌电流,也
STM32复位及通过函数判断是何种条件出发的复位
STM32F10xxx支持三种复位形式,分别为系统复位.上电复位和备份区域复位. 一.系统复位: 系统复位将复位所有寄存器至它们的复位状态. 当发生以下任一事件时,产生一个系统复位: 1. NRST引脚上的低电平(外部复位) 2. 窗口看门狗计数终止(WWDG复位) 3. 独立看门狗计数终止(IWDG复位) 4. 软件复位(SW复位) 5. 低功耗管理复位 可通过查看RCC_CSR控制状态寄存器中的复位状态标志位识别复位事件来源. 软件复位通过将Cortex™-M3中断应用和复位控制寄存器中的S
STM32几个IO的工作模式
浮空,顾名思义就是浮在空中,上面用绳子一拉就上去了,下面用绳子一拉就沉下去了. 开漏,就等于输出口接了个NPN三极管,并且只接了e,b. c极 是开路的,你可以接一个电阻到3.3V,也可以接一个电阻到5V,这样,在输出1的时候,就可以是5V电压,也可以是3.3V电压了.但是不接电阻上拉的时候,这个输出高就不能实现了. 推挽,就是有推有拉,任何时候IO口的电平都是确定的,不需要外接上拉或者下拉电阻. (1)GPIO_Mode_AIN 模拟输入 (2)GPIO_Mode_IN_FLOATING
STM32库函数编程、Keli/MDK、stm32f103zet6
catalogue . Cortex-M3地址空间 . 基于标准外设库的软件开发 . 基于固件库实现串口输出(发送)程序 . 红外接收实验 . 深入分析流水灯例程 . GPIO再举例之按键实验 . 串口通信(USART) . 库函数开发通用流程小结 . DMA传输方式 . STM32 ADC . SysTick(系统滴答定时器) . STM32定时器 0. Cortex-M3地址空间 0x1: MDK中三种linker之间的区别 1. 采用Target对话框中的RAM和ROM地址 采用此方式,需
STM32笔记总结
1.命名规则 2.#pragma pack使用 #pragma pack 1保证字节对齐 置结构体的边界对齐为1个字节,也就是所有数据在内存中是连续存储的struct s{ char ch; int i;};char 1个字节 int 4个字节若不加#pragma pack ,则占内存4+4=8个加上#pragma pack, 则占内存4+1=5个字节 3.GPIO的配置 4种输入模式:输入浮空.输入上拉.输入下拉.模拟输入 4种输出模式:开漏输出.开漏复用功能.推挽式输出.推挽
嵌入式单片机STM32应用技术(课本)
目录SAIU R20 1 6 第1页第1 章. 初识STM32...................................................................................................................... 11.1. 课前预习..........................................................................................
stm32寄存器版学习笔记01 GPIO口的配置(LED、按键)
STM32的I/O口可以由软件配置成如下8种模式:输入浮空.输入上拉.输入下拉.模拟输入.开漏输出.推挽输出.推挽式复用功能及开漏复用功能.每个I/O口由7个寄存器来控制:配置模式的端口配置寄存器CRL和CRH(模式.速度):数据寄存器IDR和ODR:置位/复位寄存器BSRR:复位寄存器BRR:锁存寄存器LCKR. I/O口模式: GPIO的8种模式 通用输出 推挽输出(Push-Pull) 可以输出高.低电平,连接数字器件 开漏输出(Open-Drain) 开漏引脚不连接外部的上拉电阻时,
关于STM32中GPIO的8种工作模式
CSDN:http://blog.csdn.net/l20130316 博客园:http://www.cnblogs.com/luckyalan/ 1 综述 I/O口是单片机中非常常用的外设,STM32的I/O口有8种状态,虽然一直在使用过程中没有遇到什么问题,但是一直都不是很清楚,因此这里做一个总结(实际上这里的概念也是和STM8等其他单片机,理解了这8中状态,也就基本上理解了大部分I/O口). 2 庐山真面目 我们在库文件中的"stm32f10x_gpio.h"中可以看到如下代码:
热门专题
初次访问jenkins输入密码显示超时
win10子系统ubuntu sudo 重置密码
texworks和winedt一样的吗
xml声明式事务管理失效
python3 xlwt 设置行高列宽
mysql数据库备份与恢复的命令
asp.net 用户在线状态
术之多 图的基本算法(BFS和DFS)
python 机械臂逆解
access时间比较
JSONObject循环遍历的时候怎么排序
rest 接口 增删改查
开发者网络里的媒体没数据
js限制上传视频编码h264
从redis中获取对象 变成了LinkedHashMap
window cmd 結果解析
windows2008 r2 standard 对比
sql server 动态sql
mysql 关联查询子表一条数据
电脑mac地址关机了还有效吗