KiKi's K-Number Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3864 Accepted Submission(s): 1715 Problem Description For the k-th number, we all should be very familiar with it. Of course,to
paper 4中介绍了支持向量机,结果说到 Maximum Margin Classifier ,到最后都没有说“支持向量”到底是什么东西.不妨回忆一下上次最后一张图: 可以看到两个支撑着中间的 gap 的超平面,它们到中间的 separating hyper plane 的距离相等(想想看:为什么一定是相等的?),即我们所能得到的最大的geometrical margin γ˜.而“支撑”这两个超平面的必定会有一些点,试想,如果某超平面没有碰到任意一个点的话,那么我就可以进一步地扩充中间的 g
今天给大家介绍一下one class classification以及用SVDD(support vector domain description)做one class classification.最近接触了一下one class classification,挺有意思的,和多类classification的思路还是有很大差别,比较长姿势~ 我们知道,classification问题一般都是2类及2类以上的,典型的2类问题比如识别一封邮件是不是垃圾邮件,这里就只有2类,"是"或者&
SVMs are considered by many to be the most powerful 'black box' learning algorithm, and by posing构建 a cleverly-chosen optimization objective优化目标, one of the most widely used learning algorithms today. 第一节 向量的内积(SVM的基本数学知识) Support Vector Machines 支持向
题目: Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set. get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
MATLAB中求矩阵非零元的坐标: 方法1: index=find(a); [i,j]=ind2sub(size(a),index); disp([i,j]) 方法2: [i,j]=find(a>0|a<0) %列出所有非零元的坐标 [i,j]=find(a==k) %找出等于k值的矩阵元素的坐标 所用函数简介: IND2SUB Multiple subscripts from linear index. IND2SUB is used to determine the equivalent
11 SMO优化算法(Sequential minimal optimization) SMO算法由Microsoft Research的John C. Platt在1998年提出,并成为最快的二次规划优化算法,特别针对线性SVM和数据稀疏时性能更优.关于SMO最好的资料就是他本人写的<Sequential Minimal Optimization A Fast Algorithm for Training Support Vector Machines>. 首先回到前面一直悬而未解的问题,对