首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
svm线性核函数作用
2024-08-24
[白话解析] 深入浅出支持向量机(SVM)之核函数
[白话解析] 深入浅出支持向量机(SVM)之核函数 0x00 摘要 本文在少用数学公式的情况下,尽量仅依靠感性直觉的思考来讲解支持向量机中的核函数概念,并且给大家虚构了一个水浒传的例子来做进一步的通俗解释. 0x01 问题 在学习核函数的时候,我一直有几个很好奇的问题. Why 为什么线性可分很重要? Why 为什么低维数据升级到高维数据之后,就可以把低维度数据线性可分? What 什么是核函数,其作用是什么? How 如何能够找到核函数? 不知道大家是否和我一样有这些疑问,在后文中, 我将通过
SVM之核函数
SVM之问题形式化 SVM之对偶问题 >>>SVM之核函数 SVM之解决线性不可分 写在SVM之前——凸优化与对偶问题 上一篇SVM之对偶问题中讨论到,SVM最终形式化为以下优化问题\[\begin{align}\left\{ \begin{matrix}\underset{\alpha }{\mathop{\max }}\,\sum\limits_{i}{{{\alpha }_{i}}}-\frac{1}{2}\sum\limits_{i,j}{{{\alpha }_{i}}{{\al
svm常用核函数
SVM核函数的选择对于其性能的表现有至关重要的作用,尤其是针对那些线性不可分的数据,因此核函数的选择在SVM算法中就显得至关重要.对于核技巧我们知道,其目的是希望通过将输入空间内线性不可分的数据映射到一个高纬的特征空间内使得数据在特征空间内是可分的,我们定义这种映射为ϕ(x)ϕ(x) ,那么我们就可以把求解约束最优化问题变为 minαs.t.αi≥0,12∑Ni=1∑Nj=1αiαjyiyj(ϕi⋅ϕj)−∑Ni=1αi∑Ni=1αiyi=0i=1,2,...,Nminα12∑i=1N∑j=
6. 支持向量机(SVM)核函数
1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量机(SVM)软间隔 6. 支持向量机(SVM)核函数 1. 前言 之前介绍了SVM的原理和SVM的软间隔,它们已经可以很好的解决有异常点的线性问题,但是如果本身是非线性的问题,目前来看SVM还是无法很好的解决的.所以本文介绍SVM的核函数技术,能够顺利的解决非线性的问题. 2. 多项式回归 在线性回
svm常用核函数介绍
这里有一篇博文介绍了,每个核函数的用途: https://blog.csdn.net/batuwuhanpei/article/details/52354822 在吴恩达的课上,也曾经给出过一系列的选择核函数的方法: 1.如果特征的数量大到和样本数量差不多,则选用LR或者线性核的SVM: 2.如果特征的数量小,样本的数量正常,则选用SVM+高斯核函数: 3.如果特征的数量小,而样本的数量很大,则需要手工添加一些特征从而变成第一种情况. 大牛对这3点的理解: (1)如果特征维数很高,往往线性可分(
SVM算法核函数的选择
SVM支持向量机,一般用于二分类模型,支持线性可分和非线性划分.SVM中用到的核函数有线性核'linear'.多项式核函数pkf以及高斯核函数rbf. 当训练数据线性可分时,一般用线性核函数,直接实现可分: 当训练数据不可分时,需要使用核技巧,将训练数据映射到另一个高维空间,使再高维空间中,数据可线性划分, 但需要注意的是,若样本n和特征m很大时,且特征m>>n时,需要用线性核函数,因为此时考虑高斯核函数的映射后空间维数更高,更复杂,也容易过拟合,此时使用高斯核函数的弊大于利,选择使用线性核会
详解SVM模型——核函数是怎么回事
大家好,欢迎大家阅读周二机器学习专题,今天的这篇文章依然会讲SVM模型. 也许大家可能已经看腻了SVM模型了,觉得我是不是写不出新花样来,翻来覆去地炒冷饭.实际上也的确没什么新花样了,不出意外的话这是本专题最后一篇文章了.下周我们就要开始深度学习之旅了,我相信很多同学期待这一天已经很久了,实际上我也一样,因为这个专题里讲的大部分内容已经只在面试环节会用到,而我已经很久没有面试了.所以让我们收拾一下激动的心情,来把SVM最后剩下的一点内容讲完. 虽然只剩下最后一点内容了,但是今天的内容非常重要,可
支持向量机 (二): 软间隔 svm 与 核函数
软间隔最大化(线性不可分类svm) 上一篇求解出来的间隔被称为 "硬间隔(hard margin)",其可以将所有样本点划分正确且都在间隔边界之外,即所有样本点都满足 \(y_{i}(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b) \geqslant 1\) . 但硬间隔有两个缺点:1. 不适用于线性不可分数据集. 2. 对离群点(outlier)敏感. 比如下图就无法找到一个超平面将蓝点和紫点完全分开: 下图显示加入了一个离群点后,超平面发生了
机器学习——支持向量机(SVM)之核函数(kernel)
对于线性不可分的数据集,可以利用核函数(kernel)将数据转换成易于分类器理解的形式. 如下图,如果在x轴和y轴构成的坐标系中插入直线进行分类的话, 不能得到理想的结果,或许我们可以对圆中的数据进行某种形式的转换,从而得到某些新的变量来表示数据.在这种表示情况下,我们就更容易得到大于0或者小于0的测试结果.在这个例子中,我们将数据从一个特征空间转换到另一个特征空间,在新的空间下,我们可以很容易利用已有的工具对数据进行处理,将这个过程称之为从一个特征空间到另一个特征空间的映射.在通常情况下,这种
机器学习:SVM(核函数、高斯核函数RBF)
一.核函数(Kernel Function) 1)格式 K(x, y):表示样本 x 和 y,添加多项式特征得到新的样本 x'.y',K(x, y) 就是返回新的样本经过计算得到的值: 在 SVM 类型的算法 SVC() 中,K(x, y) 返回点乘:x' . y' 得到的值: 2)多项式核函数 业务问题:怎么分类非线性可分的样本的分类? 内部实现: 对传入的样本数据点添加多项式项: 新的样本数据点进行点乘,返回点乘结果: 多项式特征的基本原理:依靠升维使得原本线性不可分的数据线性可分: 升维的
SVM – 线性分类器
感知机 要理解svm,首先要先讲一下感知机(Perceptron),感知机是线性分类器,他的目标就是通过寻找超平面实现对样本的分类:对于二维世界,就是找到一条线,三维世界就是找到一个面,多维世界就是要找到一个线性表达式,或者说线性方程: f(x) = ΣθiXi 表达式为0,就是超平面,用来做分界线作为分类:A分类都满足f(x) > 0, B分类都满足f(x) < 0:未来进行分类预测的时候,就是将特征值带入到模型中,根据输出值的正负号即可实现分类.算法实现过程即使初始化一个权重矩阵,然后通过
2. SVM线性分类器
在一个线性分类器中,可以看到SVM形成的思路,并接触很多SVM的核心概念.用一个二维空间里仅有两类样本的分类问题来举个小例子.如图所示 和是要区分的两个类别,在二维平面中它们的样本如上图所示.中间的直线就是一个分类函数,它可以将两类样本完全分开. 实际上,一个线性函数是一个实值函数,而我们的分类问题需要离散的输出值,例如用1表示某个样本属于类别,而用0表示不属于(不属于也就意味着属于),这时候只需要简单的在实值函数的基础上附加一个阈值即可,通过分类函数执行时得到的值大于还是小于这个阈值来确定类别
SVM支持向量机——核函数、软间隔
支持向量机的目的是寻找一个能讲两类样本正确分类的超平面,很多时候这些样本并不是线性分布的. 由此,可以将原始特征空间映射到更高维的特征空间,使其线性可分.而且,如果原始空间是有限维,即属性数量有限, 那么一定存在一个高维特征空间使样本可分. k(.,.)就是核函数.整理后 定理证明:只要一个对称函数所对应的核矩阵半正定,它就能作为核函数使用. 此外,还可以组合函数得到新的核函数,比如假设K1和K2都是核函数,线性组合:r1K1+r2K2也是核函数,还有: 软间隔: 在分类问题中,我们很难完全将数
SVM入门——线性分类器的求解,核函数
一.问题的描述 从最一般的定义上说,一个求最小值的问题就是一个优化问题(也叫寻优问题,更文绉绉的叫法是规划——Programming),它同样由两部分组成,目标函数和约束条件,可以用下面的式子表示: (式1) 约束条件用函数c来表示,就是constrain的意思啦.你可以看出一共有p+q个约束条件,其中p个是不等式约束,q个等式约束. 关于这个式子可以这样来理解:式中的x是自变量,但不限定它的维数必须为1(视乎你解决的问题空间维数,对我们的文本分类来说,那可是成千上万啊).要求f(x)在哪一点上
SVM之解决线性不可分
SVM之问题形式化 SVM之对偶问题 SVM之核函数 >>>SVM之解决线性不可分 写在SVM之前——凸优化与对偶问题 上一篇SVM之核函数介绍了通过计算样本核函数,实际上将样本映射到高维空间以望使其线性可分的方法,一定程度上解决了线性不可分问题,但并不彻底. 现在,换个思路,对于线性不可分问题不再千方百计的变换数据使其线性可分,对于有些数据,找到合适的变换可能是相当困难的.我们允许数据线性不可分,允许得到的分类器对一些样本而言不“完美”,但分类器得为自己的不“完美”付出代价,它要受到惩
SVM学习(续)核函数 & 松弛变量和惩罚因子
SVM的文章可以看:http://www.cnblogs.com/charlesblc/p/6193867.html 有写的最好的文章来自:http://www.blogjava.net/zhenandaci/category/31868.html 这里面貌似也有一些机器学习文章:http://leftnoteasy.cnblogs.com/ 下面这个系列 Jasper's Java Jacal 里面的SVM真的讲的好.已经把每一篇都下载了,目录: /Users/baidu/Documents/
支持向量机(SVM)必备概念(凸集和凸函数,凸优化问题,软间隔,核函数,拉格朗日乘子法,对偶问题,slater条件、KKT条件)
SVM目前被认为是最好的现成的分类器,SVM整个原理的推导过程也很是复杂啊,其中涉及到很多概念,如:凸集和凸函数,凸优化问题,软间隔,核函数,拉格朗日乘子法,对偶问题,slater条件.KKT条件还有复杂的SMO算法! 相信有很多研究过SVM的小伙伴们为了弄懂它们也是查阅了各种资料,着实费了不少功夫!本文便针对SVM涉及到的这些复杂概念进行总结,希望为大家更好地理解SVM奠定基础(图片来自网络). 一.凸集和凸函数 在讲解凸优化问题之前我们先来了解一下凸集和凸函数的概念 凸集:在点集拓扑学与欧几
支持向量机SVM——专治线性不可分
SVM原理 线性可分与线性不可分 线性可分 线性不可分-------[无论用哪条直线都无法将女生情绪正确分类] SVM的核函数可以帮助我们: 假设‘开心’是轻飘飘的,“不开心”是沉重的 将三维视图还原成二维: 刚利用“开心”“不开心”的重量差实现将二维数据变成三维的过程,称为将数据投射至高维空间,这正是核函数的功能 在SVM中,用的最普遍的两种把数据投射到高维空间的方法分别是多项式内核.径向基内核(RFB) 多项式内核: 通过把样本原始特征进行乘方来把数据投射到高维空间[如特征1^2,特征2^3
支持向量机SVM、优化问题、核函数
1.介绍 它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,即支持向量机的学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解. 2.求解过程 1.数据分类—SVM引入 假设在一个二维平面中有若干数据点(x,y),其被分为2组,假设这些数据线性可分,则需要找到一条直线将这两组数据分开.这个将两种数据分割开的直线被称作分隔超平面(separating hyperplane),当其在更加高维的空间中为超平面,在当前的二维平面为一条直线. 这样的直线可能存在很多条,则我们
SVM为什么需要核函数
生存?还是毁灭?——哈姆雷特 可分?还是不可分?——支持向量机 之前一直在讨论的线性分类器,器如其名(汗,这是什么说法啊),只能对线性可分的样本做处理.如果提供的样本线性不可分,结果很简单,线性分类器的求解程序会无限循环,永远也解不出来.这必然使得它的适用范围大大缩小,而它的很多优点我们实在不原意放弃,怎么办呢?是否有某种方法,让线性不可分的数据变得线性可分呢? 有!其思想说来也简单,来用一个二维平面中的分类问题作例子,你一看就会明白.事先声明,下面这个例子是网络早就有的,我一时找不到原作者的正
热门专题
js json格式转换
捕捉ef 执行超时的sql语句
Quoted-printable编码解码
man-pages安装成功仍报错
python __nq__方法有什么用
python sort 字符多条件排序
upph计算公式举例
cocos2d-x 延迟执行
openstack 实例 一直 build
jlink工具添加nationstech
echarts series pie map 图形同步变化
booth 编码在乘法器中的运用
js 字符串和words
textbox 设置只读,但是图标能点
手动安装eclemma
Animate 旋转舞台工具如何取消显示
windows启动被安全策略阻止
企业微信发消息python
VS 编译后复制文件
验证不同交换机下同一vlan的通信