首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
SystemInit 没有定义 系统时钟
2024-11-04
STM32系统时钟为什么没有定义呢
对于使用3.5版本库开发的STM32学习者 有时候不清楚为什么没有时钟定义 那么我们就简单的讲解下吧: 1,函数从启动文件开始运行(汇编文件) 2,若是hd.s 请看151行LDR R0, =SystemInit 3,我们按F12跳到SystemInit 中(包含在system_stm32f10x.c) 4,函数前部分是一些复位配置还有一些调试方面的设置下面的SetSysClock();在这个函数里可以将系统时钟设置成不同频率(24.36.48.56.72)(包含在system_stm3
基于Systick系统时钟延时的LED闪烁灯
1.回顾我们的51 单片机编程,当我们需要做系统延迟的时候,最常采用的一种方式就是使用for 循环的空语句等待来实现. 当然,在STM32 里面也可以这么实现.但是在STM32 的Cortex 内核里面,有个比其更加精准的定时器专业用于 系统定时,我们称之为Cortex 系统定时器(SysTick,系统滴答). Systick 就是一个定时器而已,只是它放在了NVIC(中断事件)中, 主要的目的是为了给操作系统提供一个硬件上的中断(号称滴答中断). 这样,只要设置好其中断的时间,就可以每隔一定时
STM32学习笔记(六) SysTick系统时钟滴答实验(stm32中断入门)
系统时钟滴答实验很不难,我就在面简单说下,但其中涉及到了STM32最复杂也是以后用途最广的外设-NVIC,如果说RCC是实时性所必须考虑的部分,那么NVIC就是stm32功能性实现的基础,NVIC的难度并不高,但是理解起来还是比较复杂的,我会在本文中从实际应用出发去说明,当然最好去仔细研读宋岩翻译的<Cortex-M3权威指南>第八章,注意这不是一本教你如何编写STM32代码的工具书,而是阐述Cortex-M3内核原理的参考书,十分值得阅读. SysTick系统时钟的核心有两个,外设初始化和S
STM32学习笔记:系统时钟和SysTick定时器
原文:http://blog.sina.com.cn/s/blog_49cb42490100s60d.html 1. STM32的时钟系统 在STM32中,一共有5个时钟源,分别是HSI.HSE.LSI.LSE.PLL (1) HSI是高速内部时钟,RC振荡器,频率为8MHz: (2) HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围是4MHz – 16MHz: (3) LSI是低速内部时钟,RC振荡器,频率为40KHz: (4)
STM32F4_RCC系统时钟配置及描述
Ⅰ.概述 对于系统时钟应该都知道它的作用,就是驱动整个芯片工作的心脏,如果没有了它,就等于人没有了心跳. 对于使用开发板学习的朋友来说,RCC系统时钟这一块知识估计没怎么去配置过,原因在于开发板提供的晶振基本上都是官方标准的时钟频率,使用官方的标准库,这样系统时钟就是默认的配置,也就是默认的频率.但对于自己设计开发板,或者想要改变系统时钟频率(如:降低功耗就需要降频)的朋友来说,配置系统时钟就有必要了. 关于时钟这一块对定时器(TIM.RTC.WDG等)相关的外设也比较重要,因为要求精准,就需要
实时时钟、系统时钟和CPU时钟的区别
http://blog.sina.com.cn/s/blog_68f909c30100pli7.html 实时时钟:RTC时钟,用于提供年.月.日.时.分.秒和星期等的实时时间信息,由后备电池供电,当你晚上关闭系统和早上开启系统时,RTC仍然会保持正确的时间和日期. 系统时钟:是一个存储于系统内存中的逻辑时钟.用于系统的计算,比如超时产生的中断异常,超时计算就是由系统时钟计算的.这种时钟在系统掉电或重新启动时每次会被清除. CPU时钟:即CPU的频率,当然这里的时钟频率指的是工作频率,即外频,还
STM32系统时钟
一.时钟树 STM32有4个时钟源: 1)HSE(高速外部时钟源) 外部晶振作为时钟源,范围为4~16MHz,常取为8MHz 2)HSI(高速内部时钟源) 由内部RC振荡器产生,频率为8MHz,但不稳定 3)LSE(低速外部时钟) 以外部晶振作为时钟源,主要供给实时时钟模块,一般用32.768KHz. 4)LSI(低速内部时钟) 由内部RC振荡器产生,也是提供给实时时钟模块,频率约为40KHz. 二.系统启动过程中时钟设置过程 以使用STM32库函数SystemInit为例进
STM32F2系列系统时钟默认配置
新到一家公司后,有个项目要用到STM32F207Vx单片机,找到网上的例子照猫画虎的写了几个例子,比如ADC,可是到了ADC多通道转换的时候就有点傻眼了,这里面的时钟跑的到底是多少M呢?单片机外挂的时钟是25M,由于该单片机时钟系统较为复杂,有内部高/低.外部高/低 .PLL锁相环时钟,又有AHB总线时钟.APB1/2时钟,而例子中很少讲到系统时钟的默认配置是怎么配置呢?那么就发点时间研究下这个单片机内部的复杂时钟系统吧. 下图是STM32F2系列的时钟树结构图: 1.内部高速时钟HSI.外部高
LPC1788系统时钟初始化
#ifndef __SYS_H_ #define __SYS_H_ #include "common.h" #define SystemCoreClock 120000000 //cpu时钟频率,计算时有用 #define ApbClock 120000000 //120M #define EmcClock 60000000 //60M #define UsbClock 48000000 //48M void SystemI
Zephyr学习(四)系统时钟
每一个支持多进程(线程)的系统都会有一个滴答时钟(系统时钟),这个时钟就好比系统的“心脏”,线程的休眠(延时)和时间片轮转调度都需要用到它. Cortex-M系列的内核都有一个systick时钟,这个时钟就是设计用来支持操作系统的,是一个24位的自动重装载向下计数器,中断入口就位于中断向量表里面,定义在zephyr-zephyr-v1.13.0\arch\arm\core\cortex_m\vector_table.S: SECTION_SUBSEC_FUNC(exc_vector_table,
S5PV210初始化系统时钟
S5PV210初始化系统时钟 S5PV210时钟体系S5PV210中包含3大类时钟domain,分别是主系统时钟domain (简称MSYS,下面将使用简称来进行相关讲解).显示相关的时钟domain (DSYS).外围设备的时钟domain (PSYS).1) MSYS:用来给cortex a8处理器,dram控制器,3D,IRAM,IROM,中断控制器等提供时钟:2) DSYS:用来给显示相关的部件提供时钟,包括FIMC, FIMD, JPEG, and multimedia IPs:3)
FreeRTOS 系统时钟节拍和时间管理
以下转载自安富莱电子: http://forum.armfly.com/forum.php FreeRTOS 的时钟节拍任何操作系统都需要提供一个时钟节拍,以供系统处理诸如延时. 超时等与时间相关的事件.时钟节拍是特定的周期性中断,这个中断可以看做是系统心跳. 中断之间的时间间隔取决于不同的应用,一般是 1ms – 100ms.时钟的节拍中断使得内核可以将任务延迟若干个时钟节拍,以及当任务等待事件发生时,提供等待超时等依据.时钟节拍率越快,系统的额外开销就越大.对于 Cortex-M3 内核的
【小梅哥SOPC学习笔记】系统时钟的使用
给NIOS II CPU添加一颗澎湃的心——系统时钟的使用 本实验介绍如何在Qsys中添加一个定时器作为NIOS II的心跳定时器,并在NIOS II中软件编程使用该定时器. 将上一个实验watchdog工程复制.粘贴并重命名为08_sysclk_timer.在Quartus II中打开该工程,然后点击Qsys快捷图标打开Qsys组件,如下图所示: 在Qsys中,打开工程目录(08_sysclk_timer)下的mysystem.qsys工程. 打开后,在左侧的IP列表中输入“timer”,然后
STM32之系统时钟
转载:http://www.openedv.com/posts/list/302.htm 时钟系统是处理器的核心,所以在学习STM32所有外设之前,认真学习时钟系统是必要的,有助于深入理解STM32. 下面是从网上找的一个STM32时钟框图,比<STM32中文参考手册>里面的是中途看起来清晰一些: 重要的时钟: PLLCLK,SYSCLK,HCKL,PCLK1,PCLK2 之间的关系要弄清楚; 1.HSI:高速内部时钟信号 stm32单片机内带的时钟 (8M频率) 精度较差
RT-thread内核之系统时钟
一.系统时钟 rt-thread的系统时钟模块采用全局变量rt_tick作为系统时钟节拍,该变量在系统时钟中断函数中不断加1.而系统时钟中断源和中断间隔一般由MCU硬件定时器(如stm32的嘀嗒定时器)决定,rt_tick初始值为0,每次MCU产生硬件定时中断后,在中断函数中不断加1,即rt_tick变量值与MCU硬件定时器定时中断间隔的乘积为系统真正运行时间(例如rt_tick=10,stm32嘀嗒定时器每隔1ms产生中断,则系统上电运行时间为10ms). 在bsp/stm32f40x/dri
linux驱动调试--修改系统时钟终端来定位僵死问题【转】
本文转载自:http://blog.chinaunix.net/uid-20671208-id-4940381.html 原文地址:linux驱动调试--修改系统时钟终端来定位僵死问题 作者:枫露清愁 曾经遇到过一个bug是这样的,通过串口终端和开发板交互时,执行一个程序后,整个系统就挂了,也不接受输入了,只能重启,后来发现是死在某段代码里了,当时可是费了一番功夫,今天来说一下怎么调试这种系统僵死的程序. 首先说一下linux的时钟中断.linux的时钟中断也是一种硬件中断,通过计数器产生输出脉
STM32(4)——系统时钟和SysTick
1.STM32的时钟系统 在STM32中,一共有5个时钟源,分别是HSI.HSE.LSI.LSE.PLL HSI是高速内部时钟,RC振荡器,频率为8MHz: HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围是4MHz – 16MHz: LSI是低速内部时钟,RC振荡器,频率为40KHz: LSE是低速外部时钟,接频率为32.768KHz的石英晶体: PLL为锁相环倍频输出,严格的来说并不算一个独立的时钟源,PLL的输入可以接HSI/2.HSE或者HSE/2.倍频可选择为2
Nios II 系统时钟timestamp的应用
在用Nios II做外设时序驱动的时候,经常会用延时函数.有时会常使用某个FPGA芯片和时钟,比如笔者一直使用的芯片是cyclone系列 EP2C35F484C8N,PLL输入SOPC时钟是50M.因此,提前测试硬件运行延时情况并编写今后常用的延时函数有一定的意义.软件:Quartus II 9.0, Nios II 9.0 硬件配置: 1. 在SOPC中调用Interval Timer核 图 1 调用Interval Timer核 2.配置Interval Time 图 2 Interval
STM32 晶振 系统时钟8MHZ和72Mhz的原因
首先问题描述: 1.自己画的板子和淘宝买的最小系统板 系统时钟不一致,自己画的是8Mhz,HSE失败:最小系统板72Mhz 2.最小系统板在程序1运行仿真的时候,查看peripherals->Power,Reset and Clock Control(PRCC)是72MHZ,在程序2仿真的时候是8Mhz,程序SystemInit()所在的文件一模一样: 3.出现过8M晶振坏了,更换晶振后时钟源正常72Mhz 问题1原因: 1.注意晶振的匹配电容的值,测试版发现系统时钟有问题时,可以是晶振不起振,
LibOpenCM3(五) 基础功能: 系统时钟, GPIO, 定时器
目录 LibOpenCM3(一) Linux下命令行开发环境配置 LibOpenCM3(二) 项目模板 Makefile分析 LibOpenCM3(三) .ld文件(连接器脚本)和startup代码说明 LibOpenCM3(四) VSCode IDE 环境配置 LibOpenCM3(五) 基础功能: 系统时钟, GPIO, 定时器 LibOpenCM3 时钟, RCC LibOpenCM3 提供了快捷方法用于初始化系统时钟 旧版本的系统时脉初始化 rcc_clock_setup_in_hse_
热门专题
wpf listbox 分组
dot 语言的图转成java的图
python 数据txt
vba中布尔变量的值
vue公共header 固定在顶部 切换页面出现问题
gcc已经安装,但是提示不存在
request_terminate_timeout 设置
远程访问oracle查询特别慢
resthighlevelclient 创建索引
C#中给DateTime类型的变量赋初始值
IDA PRO 是否进入 DLL
Django中如何DataTable
csh和bash的区别
软件的排版设计布局评价
ios js 去空格
Django部署代码修改
pandas添加到第一行
manjaro kde镜像下载
instance_norm的替代tensorflow
AAARadius宽带服务中心