feature study within neural network 在regression问题中,根据房子的size, #bedrooms原始特征可能演算出family size(可住家庭大小), zip code可能演算出walkable(可休闲去处),富人比例和zip code也可能决定了学区质量,这些个可住家庭大小,可休闲性,学区质量实际上对于房价预测有着至关重要的影响,但是他们都无法直接从原始数据输入获取,而是进过hidden layer学习抽象得出的特征. loss functio
Pooling 为了解决convolved之后输出维度太大的问题 在convolved的特征基础上采用的不是相交的区域处理 http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/ 这里有一个cnn较好的介绍 Pooling also reduces the output dimensionality but (hopefully) keeps the most salie
欢迎大家前往腾讯云社区,获取更多腾讯海量技术实践干货哦~ 作者:侯艺馨 前言 总结目前语音识别的发展现状,dnn.rnn/lstm和cnn算是语音识别中几个比较主流的方向.2012年,微软邓力和俞栋老师将前馈神经网络FFDNN(Feed Forward Deep Neural Network)引入到声学模型建模中,将FFDNN的输出层概率用于替换之前GMM-HMM中使用GMM计算的输出概率,引领了DNN-HMM混合系统的风潮.长短时记忆网络(LSTM,LongShort Term Memory)
使用二维数据构造简单卷积神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 图像和一些时序数据集都可以用二维数据的形式表现,我们此次使用随机分布的二位数据构造一个简单的CNN-网络卷积-最大池化-全连接 参考代码 # Implementing Different Layers # --------------------------------------- # # We will illustrate how to use different types # of layers
前言 总结目前语音识别的发展现状,dnn.rnn/lstm和cnn算是语音识别中几个比较主流的方向.2012年,微软邓力和俞栋老师将前馈神经网络FFDNN(Feed Forward Deep Neural Network)引入到声学模型建模中,将FFDNN的输出层概率用于替换之前GMM-HMM中使用GMM计算的输出概率,引领了DNN-HMM混合系统的风潮.长短时记忆网络(LSTM,LongShort Term Memory)可以说是目前语音识别应用最广泛的一种结构,这种网络能够对语音的长时相关性
一. 源起于Faster 深度学习于目标检测的里程碑成果,来自于这篇论文: Ren, Shaoqing, et al. "Faster R-CNN: Towards real-time object detection with region proposal networks." Advances in Neural Information Processing Systems. 2015. 也可以参考:[论文翻译] 虽然该文章前面已经讲过,但只给出了很小的篇幅,并没有作为独立的一篇