首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
Word2vec和lda
2024-08-08
Word2Vec和LDA的区别与联系
Word2vec是目前最常用的词嵌入模型之一.是一种浅层的神经网络模型,他有2种网络结构,分别是CBOW(continues bag of words)和 skip-gram.Word2vec 其实是对"上下文-单词"矩阵进行学习,其中上下文由周围的几个单词组成,由此得到的词向量表示 更多的融入了上下文共现的特征. 也就是说,如果2个词所对应的Word2vec向量相似度较高,那么他们很可能经常在相同的上下文中出现. LDA(Latent Dirichlet Allocation 隐狄利
DSSM:深度语义匹配模型(及其变体CLSM、LSTM-DSSM)
导语 在NLP领域,语义相似度的计算一直是个难题:搜索场景下Query和Doc的语义相似度.feeds场景下Doc和Doc的语义相似度.机器翻译场景下A句子和B句子的语义相似度等等.本文通过介绍DSSM.CNN-DSSM.LSTM-DSSM等深度学习模型在计算语义相似度上的应用,希望给读者带来帮助. 1. 背景 以搜索引擎和搜索广告为例,最重要的也最难解决的问题是语义相似度,这里主要体现在两个方面:召回和排序. 在召回时,传统的文本相似性如 BM25,无法有效发现语义类 Query-Doc 结果
3. 文本相似度计算-DSSM算法
1. 文本相似度计算-文本向量化 2. 文本相似度计算-距离的度量 3. 文本相似度计算-DSSM算法 4. 文本相似度计算-CNN-DSSM算法 1. 前言 最近在学习文本相似度的计算,前面两篇文章分别介绍了文本的向量化和文本的距离度量,这两篇文章的思路主要在机器学习的框架下面,本文准备换一个思路,从深度学习的角度来处理文本相似度的问题. 本文介绍DSSM(Deep Structured Semantic Models)深度学习架构. 2. DSSM原理 DSSM的原理很简单,通过搜索引擎里Q
深度学习解决NLP问题:语义相似度计算
在NLP领域,语义相似度的计算一直是个难题:搜索场景下query和Doc的语义相似度.feeds场景下Doc和Doc的语义相似度.机器翻译场景下A句子和B句子的语义相似度等等.本文通过介绍DSSM.CNN-DSSM.LSTM-DSSM等深度学习模型在计算语义相似度上的应用,希望给读者带来帮助. 1. 背景 以搜索引擎和搜索广告为例,最重要的也最难解决的问题是语义相似度,这里主要体现在两个方面:召回和排序. 在召回时,传统的文本相似性如 BM25,无法有效发现语义类 query-Doc 结果对,如
NLP自然语言处理
转:https://blog.csdn.net/qq_17677907/article/details/86448214 1.有哪些文本表示模型,它们各有什么优缺点? 文本表示模型是研究如何表示文本数据的模型,输入是语料库(文档). 知识点: 词袋模型 TF-IDF N-gram 词袋模型与N-gram 最基本的文本表示模型是词袋模型(Bag of Words).基本思想是把每篇文章看成一袋子词,并忽略每个词出现的顺序.具体来看:将整段文本表示成一个长向量,每一维代表一个单词.该维对应的
DSSM算法-计算文本相似度
转载请注明出处: http://blog.csdn.net/u013074302/article/details/76422551 导语 在NLP领域,语义相似度的计算一直是个难题:搜索场景下query和Doc的语义相似度.feeds场景下Doc和Doc的语义相似度.机器翻译场景下A句子和B句子的语义相似度等等.本文通过介绍DSSM.CNN-DSSM.LSTM-DSSM等深度学习模型在计算语义相似度上的应用,希望给读者带来帮助. 1. 背景 以搜索引擎和搜索广告为例,最重要的也最难解决的问题是语
PyTorch基础——词向量(Word Vector)技术
一.介绍 内容 将接触现代 NLP 技术的基础:词向量技术. 第一个是构建一个简单的 N-Gram 语言模型,它可以根据 N 个历史词汇预测下一个单词,从而得到每一个单词的向量表示. 第二个将接触到现代词向量技术常用的模型 Word2Vec.在实验中将以小说<三体>为例,展示了小语料在 Word2Vec 模型中能够取得的效果. 在最后一个将加载已经训练好的一个大规模词向量,并利用这些词向量来做一些简单的运算和测试,以探索词向量中包含的语义信息. 知识点 N-Gram(NPLM) 语言模型 Wo
广告行业中那些趣事系列10:推荐系统中不得不说的DSSM双塔模型
摘要:本篇主要介绍了项目中用于商业兴趣建模的DSSM双塔模型.作为推荐领域中大火的双塔模型,因为效果不错并且对工业界十分友好,所以被各大厂广泛应用于推荐系统中.通过构建user和item两个独立的子网络,将训练好的两个“塔”中的user embedding 和item embedding各自缓存到内存数据库中.线上预测的时候只需要在内存中计算相似度运算即可.DSSM双塔模型是推荐领域不中不得不会的重要模型. 目录 01 为什么要学习DSSM双塔模型 02 DSSM模型理论知识 03 推荐领域中的
word2vec参数调整 及lda调参
一.word2vec调参 ./word2vec -train resultbig.txt -output vectors.bin -cbow 0 -size 200 -window 5 -negative 0 -hs 1 -sample 1e-3 -threads 12 -binary 1 一般来说,比较喜欢用cbow ,因为模型中 cbow有向量相加的运算.##保留意见 -cbow 0表示不使用cbow模型,默认为Skip-Gram模型 -size 表示词向量维数:经验是不超过100
机器学习入门-贝叶斯构造LDA主题模型,构造word2vec 1.gensim.corpora.Dictionary(构造映射字典) 2.dictionary.doc2vec(做映射) 3.gensim.model.ldamodel.LdaModel(构建主题模型)4lda.print_topics(打印主题).
1.dictionary = gensim.corpora.Dictionary(clean_content) 对输入的列表做一个数字映射字典, 2. corpus = [dictionary,doc2vec(cl_content) for cl_content in clean_content] # 输出clean_content每一个元素根据dictionary做数字映射后的结果 3.lda = gensim.model.ldamodel.LdaModel(corpus=corpus,
[Algorithm & NLP] 文本深度表示模型——word2vec&doc2vec词向量模型
深度学习掀开了机器学习的新篇章,目前深度学习应用于图像和语音已经产生了突破性的研究进展.深度学习一直被人们推崇为一种类似于人脑结构的人工智能算法,那为什么深度学习在语义分析领域仍然没有实质性的进展呢? 引用三年前一位网友的话来讲: “Steve Renals算了一下icassp录取文章题目中包含deep learning的数量,发现有44篇,而naacl则有0篇.有一种说法是,语言(词.句子.篇章等)属于人类认知过程中产生的高层认知抽象实体,而语音和图像属于较为底层的原始输入信号,所以后两者更适
中英文维基百科语料上的Word2Vec实验
最近试了一下Word2Vec, GloVe 以及对应的python版本 gensim word2vec 和 python-glove,就有心在一个更大规模的语料上测试一下,自然而然维基百科的语料进入了视线.维基百科官方提供了一个很好的维基百科数据源:https://dumps.wikimedia.org,可以方便的下载多种语言多种格式的维基百科数据.此前通过gensim的玩过英文的维基百科语料并训练LSI,LDA模型来计算两个文档的相似度,所以想看看gensim有没有提供一种简便的方式来处理维基
[转]word2vec使用指导
word2vec是一个将单词转换成向量形式的工具.可以把对文本内容的处理简化为向量空间中的向量运算,计算出向量空间上的相似度,来表示文本语义上的相似度. 一.理论概述 (主要来源于http://licstar.net/archives/328这篇博客) 1.词向量是什么 自然语言理解的问题要转化为机器学习的问题,第一步肯定是要找一种方法把这些符号数学化. NLP 中最直观,也是到目前为止最常用的词表示方法是 One-hot Representation,这种方法把每个词表示为一个很长的向量.这个
文本深度表示模型Word2Vec
简介 Word2vec 是 Google 在 2013 年年中开源的一款将词表征为实数值向量的高效工具, 其利用深度学习的思想,可以通过训练,把对文本内容的处理简化为 K 维向量空间中的向量运算,而向量空间上的相似度可以用来表示文本语义上的相似度.Word2vec输出的词向量可以被用来做很多 NLP 相关的工作,比如聚类.找同义词.词性分析等等.如果换个思路, 把词当做特征,那么Word2vec就可以把特征映射到 K 维向量空间,可以为文本数据寻求更加深层次的特征表示 . Word2vec 使用
word2vec使用说明补充(google工具包)
[本文转自http://ir.dlut.edu.cn/NewsShow.aspx?ID=253,感谢原作者] word2vec是一个将单词转换成向量形式的工具.可以把对文本内容的处理简化为向量空间中的向量运算,计算出向量空间上的相似度,来表示文本语义上的相似度. 一.理论概述 (主要来源于http://licstar.net/archives/328这篇博客) 1.词向量是什么 自然语言理解的问题要转化为机器学习的问题,第一步肯定是要找一种方法把这些符号数学化. NLP 中最直观,也是到目前为止
word2vec使用说明
word2vec是一个将单词转换成向量形式的工具.可以把对文本内容的处理简化为向量空间中的向量运算,计算出向量空间上的相似度,来表示文本语义上的相似度. 一.理论概述 (主要来源于http://licstar.net/archives/328这篇博客) 1.词向量是什么 自然语言理解的问题要转化为机器学习的问题,第一步肯定是要找一种方法把这些符号数学化. NLP 中最直观,也是到目前为止最常用的词表示方法是 One-hot Representation,这种方法把每个词表示为一个很长的向量.这个
word2vec——高效word特征提取
继上次分享了经典统计语言模型,最近公众号中有很多做NLP朋友问到了关于word2vec的相关内容, 本文就在这里整理一下做以分享. 本文分为 概括word2vec 相关工作 模型结构 Count-based方法 vs. Directly predict 几部分,暂时没有加实验章节,但其实感觉word2vec一文中实验还是做了很多工作的,希望大家有空最好还是看一下~ 概括word2vec 要解决的问题: 在神经网络中学习将word映射成连续(高维)向量, 其实就是个词语特征求取. 特点: 1. 不
(六) 语言模型 Language Madel 与 word2vec
语言模型简介(Language Model) 简单的说,语言模型 (Language Model) 是用来计算一个句子出现概率的模型,假设句子 ,其中 代表句子中的第 个词语,则语句 W 以该顺序出现的概率可以表示为: 其中 , $p(w_n|w_1^{n-1}) = p(w_n|w_1,w_2,...,w_{n-1})$ , $ p(w_n|w_1^{n-1})$ 即为 Language Model 的参数,.通常参数的求解用方法是 N-gram 模型,最大熵模型,HMM,CRF
word2vec c代码使用说明
摘要: 1 分词 将文本语料进行分词,以空格,tab隔开都可以.生成分词后的语料 2 训练 对分词后的语料test.txt 进行训练得到模型文件vectors.bin /word2vec -train test.txt -output vectors.bin -cbow 0 -size 200 -window 5 -negative 0 -hs 1 -sample 1e-3 -threads 12 -binary 1 3 进行各种应用 distance.c 得到这个词最相似的词 caller.
自然语言处理高手_相关资源_开源项目(比如:分词,word2vec等)
(1) 中科院自动化所的博士,用神经网络做自然语言处理:http://licstar.net (2) 分词项目:https://github.com/fxsjy/jieba(3) 清华大学搞的中文分词等NLP开源项目:https://github.com/thunlp (4)一个轻量级的分词开源软件:https://github.com/lionsoul2014/jcseg (5) 有一些信息检索的笔记:http://www.cnblogs.com/jcli/category/315064.ht
热门专题
mongo template复合查询
eltable删除表格某一列
WPF ListView 行分组按钮
jquery控制旋转
idea main 不能debug
win server 2012 r2 卸载IE11浏览器
sqleonardo 驱动
为什么hooks不能写在循环或者条件判断语句里
NGUI UIButton
动网格 中刚体运动文件如何编写
openresty 定时器premature
gorm 设置默认驼峰
pdf.js 文件打开文字散乱
todo 设置reducetask个数 和自定义分区器
css 样式后面覆盖前面和使用顺序无关
TFT-LCD参数模拟
vscode tab颜色 插件
gitlab服务器 配置
python 生成器推导式 如何赋值
aes ni指令集官网