【题解】Bzoj2560串珠子
挺强的……容斥+状压DP。首先想到如果可以求出f[k],f[k]代表联通状态为k的情况下的合法方案数,则f[k] = g[k] - 非法方案数。g[k]为总的方案数,这是容易求得的。那么非法方案数我们可以枚举 k 的子集 j,则 j 联通而剩下的则随意连(不与j联通)。可是做到这里以为自己做出来了,实际上并没有……
注意到枚举到子集 j 时,若 s' = k - j, 那如果 s' 中有一个联通的方案 s'',我们在这里减去一次,在之后枚举到s''时又会枚举到这个方案一次。实际上,这也就是说0111与1000这两个子集是对称的。所以我们为了避免这样的情况,就锁定一个点a,使得点 a 一定不出现在集合 j 中,可以使得 a 只能出现在集合 s' 中,也就避免了重复。
代码有参考,如有雷同,是我抄的 (o´ω`o)ノ
#include <bits/stdc++.h>
using namespace std;
#define maxn 20
#define maxm ((1 << 16) + 2)
#define mod 1000000007
#define int long long
int n, bin[maxn], a[maxn][maxn];
int f[maxm], g[maxm]; int read()
{
int x = , k = ;
char c;
c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} signed main()
{
n = read(); bin[] = ;
for(int i = ; i <= n; i ++)
for(int j = ; j <= n; j ++)
a[i][j] = read();
for(int i = ; i <= n; i ++) bin[i] = bin[i - ] << ;
for(int k = ; k < bin[n]; ++ k)
{
f[k] = ;
for(int i = ; i < n; i ++)
if(k & bin[i - ])
for(int j = i + ; j <= n; j ++)
if(k & bin[j - ])
f[k] = f[k] * (a[i][j] + ) % mod;
g[k] = f[k]; int K = (k ^ (k & -k));
for(int j = K; j; j = (j - ) & K)
f[k] = (f[k] - g[j] * f[k ^ j] % mod + mod) % mod;
}
printf("%lld\n", f[bin[n] - ]);
return ;
}
【题解】Bzoj2560串珠子的更多相关文章
- 题解-bzoj2560 串珠子
刚被教练数落了一通,心情不好,来写篇题解 Problem bzoj2560 题目简述:给定\(n\)个点的,每两个点\(i,j\)之间有\(c_{i,j}\)条直接相连的路(其中只能选一条或不选),问 ...
- bzoj2560串珠子 状压dp+容斥(?)
2560: 串珠子 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 515 Solved: 348[Submit][Status][Discuss] ...
- bzoj2560 串珠子
Description 铭铭有n个十分漂亮的珠子和若干根颜色不同的绳子.现在铭铭想用绳子把所有的珠子连接成一个整体. 现在已知所有珠子互不相同,用整数1到n编号.对于第i个珠子和第j个珠子,可以选择不 ...
- bzoj2560串珠子(子集dp)
铭铭有n个十分漂亮的珠子和若干根颜色不同的绳子.现在铭铭想用绳子把所有的珠子连接成一个整体. 现在已知所有珠子互不相同,用整数1到n编号.对于第i个珠子和第j个珠子,可以选择不用绳子连接,或者在ci, ...
- [BZOJ2560]串珠子:状压DP+容斥原理
分析 为什么我去年6月做过这道题啊,估计当时抄的题解. 具体做法就是令\(f[S]\)表示保证连通点集\(S\)的方案数,\(g[S]\)表示不保证连通点集\(S\)的方案数. 容易想到: \[g[S ...
- bzoj2560 串珠子 状压DP
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2560 题解 大概是这类关于无向图的联通性计数的套路了. 一开始我想的是这样的,考虑容斥,那么就 ...
- BZOJ2560串珠子
/* 很清新的一道题(相比上一道题) g[S]表示该 S集合中胡乱连的所有方案数, f[S] 表示S集合的答案 那么F[S] 等于G[S]减去不合法的部分方案 不合法的方案就枚举合法的部分就好了 g[ ...
- 2019.02.09 bzoj2560: 串珠子(状压dp+简单容斥)
传送门 题意简述:nnn个点的带边权无向图,定义一个图的权值是所有边的积,问所有nnn个点都连通的子图的权值之和. 思路: fif_ifi表示保证集合iii中所有点都连通其余点随意的方案数. gig ...
- bzoj2560串珠子——子集DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2560 转载: 很明显的状压dp 一开始写的dp可能会出现重复统计的情况 而且难以去重 假设 ...
随机推荐
- IDEA无法引入已经创建的类
解决办法: 清理一下缓存: File->Invalidate Caches/Restart... OVER!
- 【linux运维递进】
================================云计算和虚拟化=================================== docker openstack svn git ...
- php使用file_get_contents 或者curl 发送get/post 请求 的方法总结
file_get_contents模拟GET/POST请求 模拟GET请求: <?php $data = array( 'name'=>'zhezhao', 'age'=>'23' ...
- Learning Experience of Big Data: Connect CentOs to Xshell and set Java environment on CentOS
1.set up connections between vitural machine and Xshell: After we connect the virtural machine to ne ...
- python 排列组合
笛卡尔积(product): 假设集合A={a, b},集合B={0, 1, 2},则两个集合的笛卡尔积为{(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2) ...
- STL——泛型编程
1.指针的算术运算 对于一个存储int数据的vector,我们要查找某值是否存在于其中,采用下标操作的做法如下: int* find(const vector<int> &vec, ...
- 嵌入式框架Zorb Framework搭建七:任务的实现
我是卓波,我是一名嵌入式工程师,我万万没想到我会在这里跟大家吹牛皮. 嵌入式框架Zorb Framework搭建过程 嵌入式框架Zorb Framework搭建一:嵌入式环境搭建.调试输出和建立时间系 ...
- JENKINS系统的安装部署
JENKINS 安装使用文档 简介 Jenkins是一个功能强大的应用程序,允许持续集成和持续交付项目,无论用的是什么平台.这是一个免费的源代码,可以处理任何类型的构建或持续集成,集成Jenkins可 ...
- 9.Mongodb与python交互
1.与python交互 点击查看官方文档 安装python包 进入虚拟环境 sudo pip install pymongo 或源码安装 python setup.py 引入包pymongo impo ...
- 一步一步构建手机WebApp开发——页面布局篇
继上一篇:一步一步构建手机WebApp开发——环境搭建篇过后,我相信很多朋友都想看看实战案例,这一次的教程是页面布局篇,先上图: 如上图所示,此篇教程便是教初学者如何快速布局这样的页面.废话少说,直接 ...