不容易系列之(3)—— LELE的RPG难题

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 16913    Accepted Submission(s): 6742

Problem Description
人称“AC女之杀手”的超级偶像LELE最近忽然玩起了深沉,这可急坏了众多“Cole”(LELE的粉丝,即"可乐"),经过多方打探,某资深Cole终于知道了原因,原来,LELE最近研究起了著名的RPG难题:

有排成一行的n个方格,用红(Red)、粉(Pink)、绿(Green)三色涂每个格子,每格涂一色,要求任何相邻的方格不能同色,且首尾两格也不同色.求全部的满足要求的涂法.

以上就是著名的RPG难题.

如果你是Cole,我想你一定会想尽办法帮助LELE解决这个问题的;如果不是,看在众多漂亮的痛不欲生的Cole女的面子上,你也不会袖手旁观吧?

Input
输入数据包含多个测试实例,每个测试实例占一行,由一个整数N组成,(0<n<=50)。
 
Output
对于每个测试实例,请输出全部的满足要求的涂法,每个实例的输出占一行。
 
Sample Input
1 2
Sample Output
3 6
 
 
 
 【分析】:

1.也是一道递推找规律的题,首先易知f(1)=3;f(2)=6;f(3)=6;f(4)=18;

现在考虑n>3的情况,若第n-1个格子和第一个格子不同,则为f(n-1);

若第n-1个格子和第1个格子相同,则第n-2个格子和第一个格子必然不同,此时为f(n-2)再乘第n-1个格子的颜色数,很显然第n-1个格子可以是第一个格子(即第n-2个格子)的颜色外的另外两种,这样为2*f(n-2);

因此总的情况为f(n)=f(n-1)+2*f(n-2);

2.如果不考虑首尾颜色不同的话,那每次 a[i]=a[i-1]*2;
但是要考虑首尾不同,设a[i]是不考虑首尾不同的数组,那么考虑首尾不同的下标为i的数值为
a[i-1]中的首尾相同的部分*2  + a[i-1]中首尾不同部分*1
首尾不同的和首尾相同的之和等于a[i]且a[i-1]中首尾相同的部分等与a[i-2]中首尾首尾不同的部分。
 
3.考虑长为n的串。若前n-1位组成的串合法,则由于首尾不同,再添加一位时,只有1种颜色可选;若前n-1位组成的串不合法(首尾相同),那么前n-2位组成的串必须合法(因为最终要组成的n位是合法的)。此时第n位有2种颜色可选。故f(n)=f(n-1)+2*f(n-2)。
边界条件:f(1)=3,f(2)=f(3)=6。

PS:可用特征方程得出n>3时f(n)的封闭形式f(n)=2^n+2*(-1)^n。

4.a[i]=分两种,
  1) 前i-1首尾不同 ,个数刚好a[i-1]。
  2) 前i-1首尾相同 ,显然第一个与第i-2个颜色就不能相同了,个数刚好a[i-2], 但是此时最后一个可以取两种颜色。

5.分析到n的合法涂法总数:
              1)n-1与1的颜色一样, 既然n-1与1同色,说明n-2一定不与1同色,那么,则对于第n个格子有两种涂色方法
                  即:2*f[n-2];
              2)n-1与1的颜色不一样,那么,第n个格子的涂色方式只有一种
                  即:f[n-1]
              3)f[n]=f[n-1]+2*f[n-2];

#include <stdio.h>
int main()
{
int i,n;
__int64 a[51]={3,6,6};
for (i=3;i<51;i++)
a[i]=a[i-1]+a[i-2]*2;
while (scanf("%d",&n)!=EOF)
printf("%I64d\n",a[n-1]);
return 0;
}

  

HDU 2045 LELE的RPG难题(递推)的更多相关文章

  1. HDU 2045 LELE的RPG难题

    递推 枚举起点状态 #include <algorithm> #include <iostream> #include <cstring> #include < ...

  2. HDU 2045不easy系列之三LELE的RPG难题(趋向于DP的递推)

    不easy系列之(3)-- LELE的RPG难题 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Ot ...

  3. HDU 2045 不容易系列之(3)—— LELE的RPG难题(递归/动态规划)

    不容易系列之(3)—— LELE的RPG难题 Problem Description 人称“AC女之杀手”的超级偶像LELE最近忽然玩起了深沉,这可急坏了众多“Cole”(LELE的粉丝,即" ...

  4. (杭电 2045)不容易系列之(3)—— LELE的RPG难题

    不容易系列之(3)-- LELE的RPG难题 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Othe ...

  5. hdoj 2045 不容易系列之(3)—— LELE的RPG难题

    不容易系列之(3)—— LELE的RPG难题 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/O ...

  6. [原]hdu2045 不容易系列三——LELE的RPG难题 (递推方程)

    本文出自:blog.csdn.net/svitter 原题:http://acm.hdu.edu.cn/showproblem.php?pid=2045 题意:中文不用我说了吧. 这个题目的关键就在于 ...

  7. A - 不容易系列之(3)―― LELE的RPG难题 简单递推

    人称“AC女之杀手”的超级偶像LELE最近忽然玩起了深沉,这可急坏了众多“Cole”(LELE的粉丝,即"可乐"),经过多方打探,某资深Cole终于知道了原因,原来,LELE最近研 ...

  8. 「日常训练」 不容易系列之(3)—— LELE的RPG难题 (HDU 2045)

    题目简述 有排成一行的n" role="presentation">nn个方格,用红(Red).粉(Pink).绿(Green)三色涂每个格子,每格涂一色,要求任何 ...

  9. Hdoj 2045.不容易系列之(3)—— LELE的RPG难题 题解

    Problem Description 人称"AC女之杀手"的超级偶像LELE最近忽然玩起了深沉,这可急坏了众多"Cole"(LELE的粉丝,即"可乐 ...

随机推荐

  1. Mac Java配置JAVA——HOME

    命令行中输入:  export JAVA_HOME=$(/usr/libexec/java_home) 

  2. Winpcap网络开发库入门

    原文链接地址:http://www.cnblogs.com/phinecos/archive/2008/10/20/1315176.html Winpcap是一个强大的网络开发库,可以实现许多功能:获 ...

  3. 雪碧图background-position的rem用法

    background的雪碧图配合rem就正常写即可,要加上background-size,大小为sprites的原图尺寸,宽高为一帧的尺寸.例如: .player{ width: 2.32rem; / ...

  4. 【BZOJ 2434】 [Noi2011]阿狸的打字机 fail树+树状数组

    就是考了一个fail树的神奇应用我们建出fail树之后,发现我们就是在求y到根的路径上所有的点在以x为根的子树里的个数,这个我们离线后用树状数组+dfs序即可解决 #include <cstdi ...

  5. springboot搭建web项目(转)

    转:http://blog.csdn.net/linzhiqiang0316/article/details/52589789 这几天一直在研究IDEA上面怎么搭建一个web-mvc的SpringBo ...

  6. Java之戳中痛点 - (5)switch语句break不能忘以及default不同位置的用法

    先看一段代码: public class Test{ public static void main(String[] args){ System.)); } } public static Stri ...

  7. eclipse 主题文件配置

    eclipse市场搜索 Eclipse Color Theme ----用于控制文本域主题 Eclipse 4 Chrome Theme  chrome风格的主题 最新的:Jeeeyul's Them ...

  8. es6+最佳入门实践(11)

    11.async函数 async 函数是什么?一句话,它就是 Generator 函数的语法糖.通俗的说就是Generator函数的另一种写法,这种写法更简洁,除此之外,async函数还对Genrat ...

  9. [NOIp普及组2011]瑞士轮

    洛谷题目链接:瑞士轮 题目背景 在双人对决的竞技性比赛,如乒乓球.羽毛球.国际象棋中,最常见的赛制是淘汰赛和循环赛.前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高.后者的特点是较为公平,偶然性较 ...

  10. 【poj3260-最少找零】多重背包+完全背包

    多重背包+完全背包. 买家:多重背包:售货员:完全背包: 开两个数组,分别计算出买家,售货员每个面额的最少张数. 最重要的是上界的处理:上界为maxw*maxw+m(maxw最大面额的纸币). (网上 ...