最长单增子序列

(LIS Longest Increasing Subsequence)给定一个数列,从中删掉任意若干项剩余的序列叫做它的一个子序列,求它的最长的子序列,满足子序列中的元素是单调递增的。

输入

第1行:1个数N,N为序列的长度(2 <= N <= 50000)
第2 - N + 1行:每行1个数,对应序列的元素(-10^9 <= S[i] <= 10^9)
输出
 
输出最长递增子序列的长度。
 
输入示例

8
5
1
6
8
2
4
5
10
输出示例

5
 
请选取你熟悉的语言,并在下面的代码框中完成你的程序,注意数据范围,最终结果会造成Int32溢出,这样会输出错误的答案。
不同语言如何处理输入输出,请查看下面的语言说明。
【分析】
我们现在简单讲一下一个O(nlogn)的算法。我们假象一下dp[i][j]表示前i项时构成长度为j的单调子序列的话,最后一项最小的时候是多少。
如果没有长度为j的单调子序列,则设置为+∞。

我们证明dp[i], 随着j的增长单调递增(不考虑无穷大的时候)
初值dp[0][0] = -∞表示长度为0的单调子序列可以达到无穷小。显然dp[0]只有一项值,它是单调递增的。假设dp[i – 1]是单调递增的:
即 dp[i – 1][0] < dp[i – 1][1] < dp[i – 1][2] < dp[i – 1][3] <..<dp[i – 1][x] 
其实我们可以加一项dp[i – 1][x + 1] = +∞

所以 :
dp[i – 1][0] < dp[i – 1][1] < dp[i – 1][2] < dp[i – 1][3] <..<dp[i – 1][x]  < dp[i – 1][x + 1]


们考虑a[i]这一项有什么用。我们需要找到dp[i – 1][y] < a[i]把它接到长度为y的子序列后面,形成一个长度为y +
1的子序列。如果dp[i – 1][y + 1] < a[i], 这说明不属于a[i]这一项,我们考虑前个数也可以形成长度为y +
1的单增子序列,且最后一项更小,所以我们不应该更新它。事实上我们需要找到dp[i – 1][y] < a[i]  && dp[i – 1][y + 1] >= a[i], 这样把a[i]接在长度为y的子序列后面形成一个长度为(y + 1)的子序列,同时结尾更小。
于是我们有递推关系:

dp[i][0..y] = dp[i – 1][0..y]
dp[i][y + 1] = a[i]
dp[i][y + 2..] = dp[i – 1][y + 2…]

实际上我就更新了一个值,而更新的这个值的递推式,也同时证明了这个序列的单调性。
y的存在性,由于我们添加了 -∞和+∞,我们一定能找到满足上述条件的y值。而且根据单调性,我们可以利用二分查找的方法找到这个临界的y值。注意最后找到的y有可能就等于x,然后我们更新的时候,会更新dp[x + 1] = a[i],这样子序列的长度增长了1。

因为每次只更新一个值,我们dp数组只存第二维就可以了。最终的结果,其实是max {x| dp[x] < +∞}的x。
时间复杂度,二分是O(logn),所以总时间复杂度是O(nlogn)。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <time.h>
#include <string>
#include <stack>
#include <vector>
#include <set>
#include <queue>
using namespace std;
int n,a[],d[],i,j,len;
int binsearch(int x)
{
int l = , r = len, mid;
while (l <= r)
{
mid = (l + r) >> ;
if (d[mid-] <= x && x < d[mid]) return mid;
else if (x > d[mid]) l = mid + ;
else r = mid - ;
}
}
int main()
{
scanf ("%d", &n);
for (i = ; i<= n; i++)
scanf ("%d", &a[i]);
memset (d, , sizeof (d));
d[] = a[];
len = ;
for (i = ; i <= n; i++)
{
if (a[i] < d[]) j = ;
else if (a[i] > d[len]) j = ++len;
else j = binsearch (a[i]);
d[j] = a[i];
}
printf ("%d\n", len);
return ;
}

下面的代码只能过四分之一的数据,因为超时。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <time.h>
#include <string>
#include <stack>
#include <vector>
#include <set>
#include <queue>
using namespace std;
int main()
{
int n,len,i,j,dp[];
int a[];
cin>>n;
for(i=; i<n; i++)cin>>a[i];
int maxn=;dp[]=;
for(int i=; i<n; i++)
{
dp[i]=;
for(int j=; j<i; j++)
{
if(a[i]>a[j])
{
dp[i]=max(dp[i],dp[j]+);
}
}
maxn=max(maxn,dp[i]);
}
cout<<maxn<<endl;
return ;
}

51nod 最长单增子序列(动态规划)的更多相关文章

  1. 51nod 最长公共子序列问题(动态规划)(LCS)(递归)

    最长公共子序列问题 输入 第1行:字符串A 第2行:字符串B (A,B的长度 <= 1000) 输出 输出最长的子序列,如果有多个,随意输出1个. 输入示例 abcicba abdkscab 输 ...

  2. - > 动规讲解基础讲解七——最长单增子序列

    (LIS Longest Increasing Subsequence)给定一个数列,从中删掉任意若干项剩余的序列叫做它的一个子序列,求它的最长的子序列,满足子序列中的元素是单调递增的. 例如给定序列 ...

  3. 【ACM】最长公共子序列 - 动态规划

    最长公共子序列 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 咱们就不拐弯抹角了,如题,需要你做的就是写一个程序,得出最长公共子序列.tip:最长公共子序列也称作最 ...

  4. 最长上升子序列(动态规划递推,LIS)

    1759:最长上升子序列 题目: 总时间限制: 2000ms 内存限制: 65536kB 描述 一个数的序列bi,当b1 < b2 < ... < bS的时候,我们称这个序列是上升的 ...

  5. C++求解汉字字符串的最长公共子序列 动态规划

        近期,我在网上看了一些动态规划求字符串最长公共子序列的代码.可是无一例外都是处理英文字符串,当处理汉字字符串时.常常会出现乱码或者不对的情况. 我对代码进行了改动.使用wchar_t类型存储字 ...

  6. [LeetCode] 300. 最长上升子序列 ☆☆☆(动态规划 二分)

    https://leetcode-cn.com/problems/longest-increasing-subsequence/solution/dong-tai-gui-hua-she-ji-fan ...

  7. 51nod 最长递增子序列

    nlogn版最长递增子序列.线段树.(其实常数蛮大的....) #include<iostream> #include<cstring> #include<algorit ...

  8. 九度OJ 1533 最长上升子序列 -- 动态规划

    题目地址:http://ac.jobdu.com/problem.php?pid=1533 题目描述: 给定一个整型数组, 求这个数组的最长严格递增子序列的长度. 譬如序列1 2 2 4 3 的最长严 ...

  9. 300. Longest Increasing Subsequence(LIS最长递增子序列 动态规划)

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

随机推荐

  1. bzoj 1977 洛谷P4180 严格次小生成树

    Description: 给定一张N个节点M条边的无向图,求该图的严格次小生成树.设最小生成树边权之和为sum,那么严格次小生成树就是边权之和大于sum的最小的一个 Input: 第一行包含两个整数N ...

  2. poj3133 Manhattan Wiring

    Manhattan Wiring Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 2016   Accepted: 1162 ...

  3. SICAU-OJ: 第k小

    第k小 题意: 给出一个长度不超过5000的字符串,然后让你找出第K小的字串(1<=K<=5).重复的串大小相等. 题解: 这里我们知道某些串的前缀是肯定小于等于其本身的. 那么长度为5的 ...

  4. 用Hibernate实现分页查询

    分页查询就是把数据库中某张表的记录数进行分页查询,在做分页查询时会有一个Page类,下面是一个Page类,我对其做了详细的注解: package com.entity; /** * @author:秦 ...

  5. Django请求原理

    总结一下: 1. 进来的请求转入/hello/. 2. Django通过在ROOT_URLCONF配置来决定根URLconf. 3. Django在URLconf中的所有URL模式中,查找第一个匹配/ ...

  6. TCP ------ RST的产生

    产生RST的几个原因 1.请求超时 有89.27两台主机.主机89向主机27发送了一个SYN,表示希望连接8888端口,主机27回应了主机89一个SYN表示可以连接.但是主机89莫名其妙的发送了一个R ...

  7. Linux Top 命令参数解析

    转载自:http://www.jb51.net/LINUXjishu/34604.html TOP是一个动态显示过程,即可以通过用户按键来不断刷新当前状态.如果在前台执行该命令,它将独占前台,直到用户 ...

  8. Spring学习--通过注解配置 Bean (二)

    在 classpath 中扫描组件: 当在组件类上使用了特定的注解之后 , 还需要在 Spring 的配置文件中声明 <context:component-scan>: base-pack ...

  9. L3-003. 社交集群(并查集)

    L3-003. 社交集群 时间限制 1000 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 陈越 在社交网络平台注册时,用户通常会输入自己的兴趣爱好, ...

  10. [bzoj1588][HNOI2002]营业额统计——splay

    题目大意 你被要求编写一个数据结构,支援以下操作,操作在线. 插入一个元素 查询一个元素与之前插入元素的最小差值. 题解 一道模板题.我是写了一个pre和succ函数水过的.1A,比较高兴. 代码 # ...