hdu 4956 Poor Hanamichi BestCoder Round #5(数学题)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4956
Poor Hanamichi
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 7 Accepted Submission(s): 4
Hanamichi is taking part in a programming contest, and he is assigned to solve a special problem as follow: Given a range [l, r] (including l and r), find out how many numbers in this range have the property: the sum of its odd digits is smaller than the sum of its even digits and the difference is 3.
A integer X can be represented in decimal as:
X=An×10n+An−1×10n−1+…+A2×102+A1×101+A0
The odd dights are A1,A3,A5… and A0,A2,A4… are even digits.
Hanamichi comes up with a solution, He notices that:
102k+1 mod 11 = -1 (or 10), 102k mod 11 = 1,
So X mod 11
= (An×10n+An−1×10n−1+…+A2×102+A1×101+A0)mod11
= An×(−1)n+An−1×(−1)n−1+…+A2−A1+A0
= sum_of_even_digits – sum_of_odd_digits
So he claimed that the answer is the number of numbers X in the range which satisfy the function: X mod 11 = 3. He calculate the answer in this way :
Answer = (r + 8) / 11 – (l – 1 + 8) / 11.
Rukaw heard of Hanamichi’s solution from you and he proved there is something wrong with Hanamichi’s solution. So he decided to change the test data so that Hanamichi’s solution can not pass any single test. And he asks you to do that for him.
You are given a integer T (1 ≤ T ≤ 100), which tells how many single tests the final test data has. And for the following T lines, each line contains two integers l and r, which are the original test data. (1 ≤ l ≤ r ≤ 1018)
You are only allowed to change the value of r to a integer R which is not greater than the original r (and R ≥ l should be satisfied) and make Hanamichi’s solution fails this test data. If you can do that, output a single number each line, which is the smallest R you find. If not, just output -1 instead.
3
3 4
2 50
7 83
-1
-1
80
题意:
首先给出一个范围 [l, r],问是否能从中找到一个数证明 Hanamichi’s solution 的解法(对于某个数 X,偶数位的数字之和 - 奇数位的数字之和 = 3 并且 这个 X 满足 X mod 11 = 3 )是错的。
也就是在范围里寻找是否存在不能同一时候满足:①偶数位的数字之和
- 奇数位的数字之和 = 3。 ②X mod 11 = 3。
代码例如以下:
#include <cstdio>
typedef __int64 LL; bool Judge(LL tt)
{
LL sumo = 0, sume = 0;
LL i = -1;
while(tt)
{
i++;
LL t = tt%10;
if(i%2)
sumo += t;
else
sume += t;
tt /= 10;
}
if(sume - sumo == 3)
return true;
return false;
}
int main()
{
int T;
LL l, r;
LL i, j;
scanf("%d",&T);
while(T--)
{
scanf("%I64d%I64d",&l,&r);
for(i = l; ; i++)
{
if(i%11 == 3)
break;
}
for(j = i; j <= r; j+=11)
{
if(!Judge(j))
break;
}
if(j > r)
printf("-1\n");
else
printf("%I64d\n",j);
}
return 0;
}
hdu 4956 Poor Hanamichi BestCoder Round #5(数学题)的更多相关文章
- [BestCoder Round #5] hdu 4956 Poor Hanamichi (数学题)
Poor Hanamichi Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) T ...
- HDU 5908 Abelian Period (BestCoder Round #88 模拟+暴力)
HDU 5908 Abelian Period (BestCoder Round #88 模拟+暴力) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=59 ...
- 【HDOJ】4956 Poor Hanamichi
基本数学题一道,看错位数,当成大数减做了,而且还把方向看反了.所求为最接近l的值. #include <cstdio> int f(__int64 x) { int i, sum; i = ...
- HDU - 5996 树上博弈 BestCoder Round #90
就是阶梯NIM博弈,那么看层数是不是奇数的异或就行了: #include<iostream> #include<cstdio> #include<algorithm> ...
- HDU 5904 - LCIS (BestCoder Round #87)
HDU 5904 - LCIS [ DP ] BestCoder Round #87 题意: 给定两个序列,求它们的最长公共递增子序列的长度, 并且这个子序列的值是连续的 分析: 状态转移方程式 ...
- hdu 5667 BestCoder Round #80 矩阵快速幂
Sequence Accepts: 59 Submissions: 650 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536 ...
- hdu 5643 BestCoder Round #75
King's Game Accepts: 249 Submissions: 671 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 6 ...
- hdu 5641 BestCoder Round #75
King's Phone Accepts: 310 Submissions: 2980 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...
- hdu 5636 搜索 BestCoder Round #74 (div.2)
Shortest Path Accepts: 40 Submissions: 610 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: ...
随机推荐
- RabbitMQ Performance Testing Tool 性能测试工具
RabbitMQ Performance Testing Tool 介绍:https://www.rabbitmq.com/java-tools.html RabbitMQ Performance T ...
- SourceTree代码管理学习git命令操作
Git管理工具SourceTree提交代码时报文件名过长,用命令解决这个错误: 使用git status查看状态信息 git status 使用git add将修改后的文件(.代表全部文件)添加到暂存 ...
- ASP.NET MVC Razor 输出没有编码的HTML字符串
Razor引擎之前要输出一段没有编码的字符串,只要@加变量名就可以了,Razor却不能这样,感觉是有点麻烦. 在Razor Beta 2以前的版本可以: @(new HtmlString(mystri ...
- Redis源码之String操作
0.前言 String操作是Redis操作中最基本的类型,包含get,set,mget,mset,append等等.下面我们会具体分析下一些命令的详细流程,特么简单的命令没有列出. 1.SET命令 2 ...
- Android API Guides---OpenGL ES
OpenGL ES Android包含高性能2D和3D图形开放图形库(OpenGL®的).详细而言,OpenGL ES的API支持. OpenGL是一个跨平台的图形API.用于指定的3D图形处理硬件标 ...
- Android-注解处理器
Android-Java注解处理器 基本概念 注解处理器(Annotation Processor)是javac的一个工具.它用来在编译时扫描和处理注解(Annotation).你能够对自己定义注解, ...
- hmtl表单
表单: <form id="" name="" method="post/get" action="负责处理的服务端&quo ...
- 基于AFNetworking封装的网络请求工具类【原创】
今天给大家共享一个我自己封装的网络请求类,希望能帮助到大家. 前提,导入AFNetworking框架, 关于修改AFN源码:通常序列化时做对text/plan等的支持时,可以一劳永逸的修改源代码,在a ...
- 【转】在Eclipse中使用JUnit4进行单元测试(初级篇)
http://www.builder.com.cn/2007/0901/482336.shtml 首先,我们来一个傻瓜式速成教程,不要问为什么,Follow Me,先来体验一下单元测试的快感! 首先新 ...
- eclipse 配置JDK
JDK安装成功,eclipse也安装成功,这时候实际上是可以不配置JDK,因为系统已经默认给你配置好了,但是下面的情况需要配置:1.你系统中安装了多个JDK,某个项目工程需要更高版本的JDK等 工具/ ...