On a grid map there are n little men and n houses. In each unit time, every little man can move one unit step, either horizontally, or vertically, to an adjacent point. For each little man, you need to pay a $1 travel fee for every step he moves, until he enters a house. The task is complicated with the restriction that each house can accommodate only one little man.

Your task is to compute the minimum amount of money you need to pay in order to send these n little men into those n different houses. The input is a map of the scenario, a '.' means an empty space, an 'H' represents a house on that point, and am 'm' indicates there is a little man on that point. 

You can think of each point on the grid map as a quite large square, so it can hold n little men at the same time; also, it is okay if a little man steps on a grid with a house without entering that house.

Input

There are one or more test cases in the input. Each case starts with a line giving two integers N and M, where N is the number of rows of the map, and M is the number of columns. The rest of the input will be N lines describing the map. You may assume both N and M are between 2 and 100, inclusive. There will be the same number of 'H's and 'm's on the map; and there will be at most 100 houses. Input will terminate with 0 0 for N and M.

Output

For each test case, output one line with the single integer, which is the minimum amount, in dollars, you need to pay.

Sample Input

2 2
.m
H.
5 5
HH..m
.....
.....
.....
mm..H
7 8
...H....
...H....
...H....
mmmHmmmm
...H....
...H....
...H....
0 0

Sample Output

2
10
28 这个题目难在建图,就是把每一个人的位置,和每一个房子连起来,容量为1,费用为两个之间的距离。
然后就跑一个最小费用最大流就可以了。
#include <cstdio>
#include <cstdlib>
#include <queue>
#include <vector>
#include <iostream>
#include <algorithm>
#include <map>
#include <cstring>
#include <cmath>
#include <string>
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const int maxn = + ;
struct edge
{
int u, v, c, f, cost;
edge(int u, int v, int c, int f, int cost) :u(u), v(v), c(c), f(f), cost(cost) {}
};
vector<edge>e;
vector<int>G[maxn];
int a[maxn];//找增广路每个点的水流量
int p[maxn];//每次找增广路反向记录路径
int d[maxn];//SPFA算法的最短路
int inq[maxn];//SPFA算法是否在队列中
int s, t;
void init()
{
for (int i = ; i <= maxn; i++)G[i].clear();
e.clear();
}
void add(int u, int v, int c, int cost)
{
e.push_back(edge(u, v, c, , cost));
e.push_back(edge(v, u, , , -cost));
int m = e.size();
G[u].push_back(m - );
G[v].push_back(m - );
}
bool bellman(int s, int t, int& flow, long long & cost)
{
memset(d, inf, sizeof(d));
memset(inq, , sizeof(inq));
d[s] = ; inq[s] = ;//源点s的距离设为0,标记入队
p[s] = ; a[s] = INF;//源点流量为INF(和之前的最大流算法是一样的) queue<int>q;//Bellman算法和增广路算法同步进行,沿着最短路拓展增广路,得出的解一定是最小费用最大流
q.push(s);
while (!q.empty())
{
int u = q.front();
q.pop();
inq[u] = ;//入队列标记删除
for (int i = ; i < G[u].size(); i++)
{
edge & now = e[G[u][i]];
int v = now.v;
if (now.c > now.f && d[v] > d[u] + now.cost)
//now.c > now.f表示这条路还未流满(和最大流一样)
//d[v] > d[u] + e.cost Bellman 算法中边的松弛
{
d[v] = d[u] + now.cost;//Bellman 算法边的松弛
p[v] = G[u][i];//反向记录边的编号
a[v] = min(a[u], now.c - now.f);//到达v点的水量取决于边剩余的容量和u点的水量
if (!inq[v]) { q.push(v); inq[v] = ; }//Bellman 算法入队
}
}
}
if (d[t] == INF)return false;//找不到增广路
flow += a[t];//最大流的值,此函数引用flow这个值,最后可以直接求出flow
cost += (long long)d[t] * (long long)a[t];//距离乘上到达汇点的流量就是费用
for (int u = t; u != s; u = e[p[u]].u)//逆向存边
{
e[p[u]].f += a[t];//正向边加上流量
e[p[u] ^ ].f -= a[t];//反向边减去流量 (和增广路算法一样)
}
return true;
}
int MincostMaxflow(int s, int t, long long & cost)
{
cost = ;
int flow = ;
while (bellman(s, t, flow, cost));//由于Bellman函数用的是引用,所以只要一直调用就可以求出flow和cost
return flow;//返回最大流,cost引用可以直接返回最小费用
}
struct node
{
int x, y;
node(int x=,int y=):x(x),y(y){}
};
node peo[], house[];
char mp[][];
int main()
{
int n, m;
while(cin>>n>>m)
{
init();
int cas = , tot = ;
if (n == && m == ) break;
for (int i = ; i <= n; i++)
{
cin >> mp[i] + ;
for(int j=;j<=m;j++)
{
if (mp[i][j] == 'm') peo[++cas] = node(i, j);
if (mp[i][j] == 'H') house[++tot] = node(i, j);
}
}
s = , t = cas + tot + ;
for (int i = ; i <= cas; i++) add(s, i, , );
for (int i = ; i <= tot; i++) add(cas + i, t, , );
for(int i=;i<=cas;i++)
{
for(int j=;j<=tot;j++)
{
int cost = abs(peo[i].x - house[j].x) + abs(peo[i].y - house[j].y);
add(i, j + cas, , cost);
}
}
ll cost = ;
int ans = MincostMaxflow(s, t, cost);
printf("%lld\n", cost);
}
return ;
}

D - Going Home POJ - 2195 网络流的更多相关文章

  1. POJ 2195 Going Home 最小费用最大流 尼玛,心累

    D - Going Home Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Subm ...

  2. poj 2195 二分图带权匹配+最小费用最大流

    题意:有一个矩阵,某些格有人,某些格有房子,每个人可以上下左右移动,问给每个人进一个房子,所有人需要走的距离之和最小是多少. 貌似以前见过很多这样类似的题,都不会,现在知道是用KM算法做了 KM算法目 ...

  3. POJ 2195 Going Home / HDU 1533(最小费用最大流模板)

    题目大意: 有一个最大是100 * 100 的网格图,上面有 s 个 房子和人,人每移动一个格子花费1的代价,求最小代价让所有的人都进入一个房子.每个房子只能进入一个人. 算法讨论: 注意是KM 和 ...

  4. POJ 2195 Going Home (带权二分图匹配)

    POJ 2195 Going Home (带权二分图匹配) Description On a grid map there are n little men and n houses. In each ...

  5. poj 2195 Going Home(最小费最大流)

    poj 2195 Going Home Description On a grid map there are n little men and n houses. In each unit time ...

  6. 【POJ 2195】 Going Home(KM算法求最小权匹配)

    [POJ 2195] Going Home(KM算法求最小权匹配) Going Home Time Limit: 1000MS   Memory Limit: 65536K Total Submiss ...

  7. (网络流 匹配 KM) Going Home --poj -- 2195

    链接: http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82835#problem/D 有n个人有n栋房子,每栋房子里能进一个人,但每走一格 ...

  8. kuangbin专题专题十一 网络流 Going Home POJ - 2195

    题目链接:https://vjudge.net/problem/POJ-2195 思路:曼哈顿距离来求每个人到每个房间的距离,把距离当作费用. 就可以用最小费用最大流来解决了,把每个房子拆成两个点,限 ...

  9. 图论--网络流--费用流POJ 2195 Going Home

    Description On a grid map there are n little men and n houses. In each unit time, every little man c ...

随机推荐

  1. 使用PagerSlidingTabStrip实现顶部导航栏

    使用PagerSlidingTabStrip配合ViewPager实现顶部导航栏. 效果图如下:          PagerSlidingTabStrip是github上的一个开源项目,项目地址如下 ...

  2. daterangepicker

    官方文档 http://www.daterangepicker.com/#examples 与angular结合 html <div date-range-picker class=" ...

  3. 使用params

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  4. Linux 下安装 Memcached 和 PHP 开启 Memcached 扩展 及 LAMP 环境的安装

    http://blog.csdn.net/liruxing1715/article/details/8269563

  5. JS常用的设计模式(5)——代理模式

    代理模式的定义是把对一个对象的访问, 交给另一个代理对象来操作. 举一个例子, 我在追一个MM想给她送一束花,但是我因为我性格比较腼腆,所以我托付了MM的一个好朋友来送. 这个例子不是非常好, 至少我 ...

  6. HttpClient请求工具类

    package com.yangche.utils; import org.apache.http.NameValuePair; import org.apache.http.client.Clien ...

  7. Fragment中的方法findFragmentById(int id)的返回值探讨

    在学习<Android编程权威指南>P124页的时候,遇到了这样的代码: 引起了我的疑问if的判断条件是(fragment==null),那执行完上一句 Fragment Fragment ...

  8. 使用 iframe + postMessage 实现跨域通信

    在实际项目开发中可能会碰到在 a.com 页面中嵌套 b.com 页面,这时第一反应是使用 iframe,但是产品又提出在 a.com 中操作,b.com 中进行显示,或者相反. 1.postMess ...

  9. .NET开源工作流RoadFlow-表单设计-子表

    子表即明细表 从表:与主表对应在子表. 从表主键:从表的主键. 主表字段:主表中与从来关联的字段,一般为主表的主键. 与主表关联字段:从表中与主表关联的字段. 选择之后即可在下面从表字段列表中设置每个 ...

  10. vs2010的帮助文档

    系统重装了,发现vs2010的帮助无论如何都是web方式,这种体验很差劲. google了才明白,原来是ms发展过程的一个败笔. 需要升级到vs2010 sp1才会有跟以前一样的帮助系统. 彻底无语了 ...