On a grid map there are n little men and n houses. In each unit time, every little man can move one unit step, either horizontally, or vertically, to an adjacent point. For each little man, you need to pay a $1 travel fee for every step he moves, until he enters a house. The task is complicated with the restriction that each house can accommodate only one little man.

Your task is to compute the minimum amount of money you need to pay in order to send these n little men into those n different houses. The input is a map of the scenario, a '.' means an empty space, an 'H' represents a house on that point, and am 'm' indicates there is a little man on that point. 

You can think of each point on the grid map as a quite large square, so it can hold n little men at the same time; also, it is okay if a little man steps on a grid with a house without entering that house.

Input

There are one or more test cases in the input. Each case starts with a line giving two integers N and M, where N is the number of rows of the map, and M is the number of columns. The rest of the input will be N lines describing the map. You may assume both N and M are between 2 and 100, inclusive. There will be the same number of 'H's and 'm's on the map; and there will be at most 100 houses. Input will terminate with 0 0 for N and M.

Output

For each test case, output one line with the single integer, which is the minimum amount, in dollars, you need to pay.

Sample Input

2 2
.m
H.
5 5
HH..m
.....
.....
.....
mm..H
7 8
...H....
...H....
...H....
mmmHmmmm
...H....
...H....
...H....
0 0

Sample Output

2
10
28 这个题目难在建图,就是把每一个人的位置,和每一个房子连起来,容量为1,费用为两个之间的距离。
然后就跑一个最小费用最大流就可以了。
#include <cstdio>
#include <cstdlib>
#include <queue>
#include <vector>
#include <iostream>
#include <algorithm>
#include <map>
#include <cstring>
#include <cmath>
#include <string>
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const int maxn = + ;
struct edge
{
int u, v, c, f, cost;
edge(int u, int v, int c, int f, int cost) :u(u), v(v), c(c), f(f), cost(cost) {}
};
vector<edge>e;
vector<int>G[maxn];
int a[maxn];//找增广路每个点的水流量
int p[maxn];//每次找增广路反向记录路径
int d[maxn];//SPFA算法的最短路
int inq[maxn];//SPFA算法是否在队列中
int s, t;
void init()
{
for (int i = ; i <= maxn; i++)G[i].clear();
e.clear();
}
void add(int u, int v, int c, int cost)
{
e.push_back(edge(u, v, c, , cost));
e.push_back(edge(v, u, , , -cost));
int m = e.size();
G[u].push_back(m - );
G[v].push_back(m - );
}
bool bellman(int s, int t, int& flow, long long & cost)
{
memset(d, inf, sizeof(d));
memset(inq, , sizeof(inq));
d[s] = ; inq[s] = ;//源点s的距离设为0,标记入队
p[s] = ; a[s] = INF;//源点流量为INF(和之前的最大流算法是一样的) queue<int>q;//Bellman算法和增广路算法同步进行,沿着最短路拓展增广路,得出的解一定是最小费用最大流
q.push(s);
while (!q.empty())
{
int u = q.front();
q.pop();
inq[u] = ;//入队列标记删除
for (int i = ; i < G[u].size(); i++)
{
edge & now = e[G[u][i]];
int v = now.v;
if (now.c > now.f && d[v] > d[u] + now.cost)
//now.c > now.f表示这条路还未流满(和最大流一样)
//d[v] > d[u] + e.cost Bellman 算法中边的松弛
{
d[v] = d[u] + now.cost;//Bellman 算法边的松弛
p[v] = G[u][i];//反向记录边的编号
a[v] = min(a[u], now.c - now.f);//到达v点的水量取决于边剩余的容量和u点的水量
if (!inq[v]) { q.push(v); inq[v] = ; }//Bellman 算法入队
}
}
}
if (d[t] == INF)return false;//找不到增广路
flow += a[t];//最大流的值,此函数引用flow这个值,最后可以直接求出flow
cost += (long long)d[t] * (long long)a[t];//距离乘上到达汇点的流量就是费用
for (int u = t; u != s; u = e[p[u]].u)//逆向存边
{
e[p[u]].f += a[t];//正向边加上流量
e[p[u] ^ ].f -= a[t];//反向边减去流量 (和增广路算法一样)
}
return true;
}
int MincostMaxflow(int s, int t, long long & cost)
{
cost = ;
int flow = ;
while (bellman(s, t, flow, cost));//由于Bellman函数用的是引用,所以只要一直调用就可以求出flow和cost
return flow;//返回最大流,cost引用可以直接返回最小费用
}
struct node
{
int x, y;
node(int x=,int y=):x(x),y(y){}
};
node peo[], house[];
char mp[][];
int main()
{
int n, m;
while(cin>>n>>m)
{
init();
int cas = , tot = ;
if (n == && m == ) break;
for (int i = ; i <= n; i++)
{
cin >> mp[i] + ;
for(int j=;j<=m;j++)
{
if (mp[i][j] == 'm') peo[++cas] = node(i, j);
if (mp[i][j] == 'H') house[++tot] = node(i, j);
}
}
s = , t = cas + tot + ;
for (int i = ; i <= cas; i++) add(s, i, , );
for (int i = ; i <= tot; i++) add(cas + i, t, , );
for(int i=;i<=cas;i++)
{
for(int j=;j<=tot;j++)
{
int cost = abs(peo[i].x - house[j].x) + abs(peo[i].y - house[j].y);
add(i, j + cas, , cost);
}
}
ll cost = ;
int ans = MincostMaxflow(s, t, cost);
printf("%lld\n", cost);
}
return ;
}

D - Going Home POJ - 2195 网络流的更多相关文章

  1. POJ 2195 Going Home 最小费用最大流 尼玛,心累

    D - Going Home Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Subm ...

  2. poj 2195 二分图带权匹配+最小费用最大流

    题意:有一个矩阵,某些格有人,某些格有房子,每个人可以上下左右移动,问给每个人进一个房子,所有人需要走的距离之和最小是多少. 貌似以前见过很多这样类似的题,都不会,现在知道是用KM算法做了 KM算法目 ...

  3. POJ 2195 Going Home / HDU 1533(最小费用最大流模板)

    题目大意: 有一个最大是100 * 100 的网格图,上面有 s 个 房子和人,人每移动一个格子花费1的代价,求最小代价让所有的人都进入一个房子.每个房子只能进入一个人. 算法讨论: 注意是KM 和 ...

  4. POJ 2195 Going Home (带权二分图匹配)

    POJ 2195 Going Home (带权二分图匹配) Description On a grid map there are n little men and n houses. In each ...

  5. poj 2195 Going Home(最小费最大流)

    poj 2195 Going Home Description On a grid map there are n little men and n houses. In each unit time ...

  6. 【POJ 2195】 Going Home(KM算法求最小权匹配)

    [POJ 2195] Going Home(KM算法求最小权匹配) Going Home Time Limit: 1000MS   Memory Limit: 65536K Total Submiss ...

  7. (网络流 匹配 KM) Going Home --poj -- 2195

    链接: http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82835#problem/D 有n个人有n栋房子,每栋房子里能进一个人,但每走一格 ...

  8. kuangbin专题专题十一 网络流 Going Home POJ - 2195

    题目链接:https://vjudge.net/problem/POJ-2195 思路:曼哈顿距离来求每个人到每个房间的距离,把距离当作费用. 就可以用最小费用最大流来解决了,把每个房子拆成两个点,限 ...

  9. 图论--网络流--费用流POJ 2195 Going Home

    Description On a grid map there are n little men and n houses. In each unit time, every little man c ...

随机推荐

  1. mysql 问题总结[转]

    一.Can't connect to MySQL server on 'localhost' (10061)   不能连接到 localhost 上的mysql分析:这说明“localhost”计算机 ...

  2. Docker的安装和镜像管理并利用Docker容器实现nginx的负载均衡、动静分离

    Docker的安装 一.Docker的概念 Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化 ...

  3. 如何实现一个简单的MVVM框架

    接触过web开发的同学想必都接触过MVVM,业界著名的MVVM框架就有AngelaJS.今天闲来无事,决定自己实现一个简单的MVVM框架玩一玩.所谓简单,就是仅仅实现一个骨架,仅表其意,不摹其形. 分 ...

  4. Navicat Premium v12.0.23.0 破解教程x86,x64通用,手动破解

    教程来源于:吾爱破解网站 ----------更新线----------- 2018.01.23 Navicat Premium v12.0.23.0 测试破解依然有效 ----------更新线-- ...

  5. pat1007. Maximum Subsequence Sum (25)

    1007. Maximum Subsequence Sum (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Y ...

  6. 【XShell】xshell 中“快速命令集”的使用

    突然看到朋友的xshell比我多一个按钮,且一点,哈哈哈 ,实现了很炫酷的功能,耐不住好奇,问了一句,原来是快速命令集! 1.选择快速命令集(两种方法a&b) a:文件 > 属性 > ...

  7. Entity FrameWork利用Database.SqlQuery<T>执行存储过程并返回参数

    目前,EF对存储过程的支持并不完善.存在以下问题: EF不支持存储过程返回多表联合查询的结果集. EF仅支持返回返回某个表的全部字段,以便转换成对应的实体.无法支持返回部分字段的情况. 虽然可以正常导 ...

  8. 在 Azure 中创建静态 HTML Web 应用

    Azure Web 应用提供高度可缩放.自修补的 Web 托管服务. 本快速入门教程演示如何将基本 HTML+CSS 站点部署到 Azure Web 应用. 使用 Azure CLI 创建 Web 应 ...

  9. 初学orcale(一)

    Oracle数据库学习: 01.数据库简介: (1)文件型数据库: Access Office组件: Foxpro (2)NoSql数据库(泛指非关系型数据库): NoSQL(NoSQL = Not ...

  10. Jms学习篇二:ActiveMQ

    ActiveMQ 是Apache出品,最流行的,能力强劲的开源消息总线 安装 1>下载:到http://activemq.apache.org/download.html 下载最新版本, 解压a ...