xgboost 调参参考
XGBoost的参数
XGBoost的作者把所有的参数分成了三类:
1、通用参数:宏观函数控制。
2、Booster参数:控制每一步的booster(tree/regression)。
3、学习目标参数:控制训练目标的表现。
---------------------- 分别介绍-----------------------
1. 通用参数
1.1、booster[默认gbtree]
选择每次迭代的模型,有两种选择:
gbtree:基于树的模型
gbliner:线性模型
1.2、silent[默认0]
当这个参数值为1时,静默模式开启,不会输出任何信息。 一般这个参数就保持默认的0,因为这样能帮我们更好地理解模型。
1.3、nthread[默认值为最大可能的线程数]
这个参数用来进行多线程控制,应当输入系统的核数。 如果你希望使用CPU全部的核,那就不要输入这个参数,算法会自动检测它。
还有两个参数,XGBoost会自动设置,目前你不用管它。接下来咱们一起看booster参数。
2. booster 参数 (只介绍基于树的booster 参数)
1、eta[默认0.3]
和GBM中的 learning rate 参数类似。 通过减少每一步的权重,可以提高模型的鲁棒性。 典型值为0.01-0.2。
2、min_child_weight[默认1]
决定最小叶子节点样本权重和。 和GBM的 min_child_leaf 参数类似,但不完全一样。XGBoost的这个参数是最小样本权重的和,而GBM参数是最小样本总数。 这个参数用于避免过拟合。当它的值较大时,可以避免模型学习到局部的特殊样本。 但是如果这个值过高,会导致欠拟合。这个参数需要使用CV来调整。
3、max_depth[默认6]
和GBM中的参数相同,这个值为树的最大深度。 这个值也是用来避免过拟合的。max_depth越大,模型会学到更具体更局部的样本。 需要使用CV函数来进行调优。 典型值:3-10
4、max_leaf_nodes
树上最大的节点或叶子的数量。 可以替代max_depth的作用。因为如果生成的是二叉树,一个深度为n的树最多生成
- n2个叶子。 如果定义了这个参数,GBM会忽略max_depth参数。
5、gamma[默认0]
在节点分裂时,只有分裂后损失函数的值下降了,才会分裂这个节点。Gamma指定了节点分裂所需的最小损失函数下降值。 这个参数的值越大,算法越保守。这个参数的值和损失函数息息相关,所以是需要调整的。
6、max_delta_step[默认0]
这参数限制每棵树权重改变的最大步长。如果这个参数的值为0,那就意味着没有约束。如果它被赋予了某个正值,那么它会让这个算法更加保守。 通常,这个参数不需要设置。但是当各类别的样本十分不平衡时,它对逻辑回归是很有帮助的。 这个参数一般用不到,但是你可以挖掘出来它更多的用处。
7、subsample[默认1]
和GBM中的subsample参数一模一样。这个参数控制对于每棵树,随机采样的比例。 减小这个参数的值,算法会更加保守,避免过拟合。但是,如果这个值设置得过小,它可能会导致欠拟合。 典型值:0.5-1
8、colsample_bytree[默认1]
和GBM里面的max_features参数类似。用来控制每棵随机采样的列数的占比(每一列是一个特征)。 典型值:0.5-1
9、colsample_bylevel[默认1]
用来控制树的每一级的每一次分裂,对列数的采样的占比。 我个人一般不太用这个参数,因为subsample参数和colsample_bytree参数可以起到相同的作用。但是如果感兴趣,可以挖掘这个参数更多的用处。
10、lambda[默认1]
权重的L2正则化项。(和Ridge regression类似)。 这个参数是用来控制XGBoost的正则化部分的。虽然大部分数据科学家很少用到这个参数,但是这个参数在减少过拟合上还是可以挖掘出更多用处的。
11、alpha[默认1]
权重的L1正则化项。(和Lasso regression类似)。 可以应用在很高维度的情况下,使得算法的速度更快。
12、scale_pos_weight[默认1]
在各类别样本十分不平衡时,把这个参数设定为一个正值,可以使算法更快收敛。
-
3. 学习目标参数
这个参数用来控制理想的优化目标和每一步结果的度量方法。
1、objective[默认reg:linear]
这个参数定义需要被最小化的损失函数。最常用的值有:
binary:logistic 二分类的逻辑回归,返回预测的概率(不是类别)。 multi:softmax 使用softmax的多分类器,返回预测的类别(不是概率)。
在这种情况下,你还需要多设一个参数:num_class(类别数目)。 multi:softprob 和multi:softmax参数一样,但是返回的是每个数据属于各个类别的概率。2、eval_metric[默认值取决于objective参数的取值]
对于有效数据的度量方法。 对于回归问题,默认值是rmse,对于分类问题,默认值是error。 典型值有:
rmse 均方根误差(- ∑Ni=1?2N??????√) mae 平均绝对误差(∑Ni=1|?|N) logloss 负对数似然函数值 error 二分类错误率(阈值为0.5) merror 多分类错误率 mlogloss 多分类logloss损失函数 auc 曲线下面积3、seed(默认0)
随机数的种子 设置它可以复现随机数据的结果,也可以用于调整参数
如果你之前用的是Scikit-learn,你可能不太熟悉这些参数。但是有个好消息,python的XGBoost模块有一个sklearn包,XGBClassifier。这个包中的参数是按sklearn风格命名的。会改变的函数名是:
1、eta ->learning_rate
2、lambda->reg_lambda
3、alpha->reg_alpha
你肯定在疑惑为啥咱们没有介绍和GBM中的’n_estimators’类似的参数。XGBClassifier中确实有一个类似的参数,但是,是在标准XGBoost实现中调用拟合函数时,把它作为’num_boosting_rounds’参数传入。
- ∑Ni=1?2N??????√) mae 平均绝对误差(∑Ni=1|?|N) logloss 负对数似然函数值 error 二分类错误率(阈值为0.5) merror 多分类错误率 mlogloss 多分类logloss损失函数 auc 曲线下面积3、seed(默认0)
3、seed(默认0)
随机数的种子 设置它可以复现随机数据的结果,也可以用于调整参数
如果你之前用的是Scikit-learn,你可能不太熟悉这些参数。但是有个好消息,python的XGBoost模块有一个sklearn包,XGBClassifier。这个包中的参数是按sklearn风格命名的。会改变的函数名是:
1、eta ->learning_rate
2、lambda->reg_lambda
3、alpha->reg_alpha
你肯定在疑惑为啥咱们没有介绍和GBM中的’n_estimators’类似的参数。XGBClassifier中确实有一个类似的参数,但是,是在标准XGBoost实现中调用拟合函数时,把它作为’num_boosting_rounds’参数传入。
参考文献:
1. http://www.2cto.com/kf/201607/528771.html
xgboost 调参参考的更多相关文章
- Xgboost调参总结
一.参数速查 参数分为三类: 通用参数:宏观函数控制. Booster参数:控制每一步的booster(tree/regression). 学习目标参数:控制训练目标的表现. 二.回归 from xg ...
- 【转载】XGBoost调参
General Parameters: Guide the overall functioning Booster Parameters: Guide the individual booster ( ...
- xgboost调参
The overall parameters have been divided into 3 categories by XGBoost authors: General Parameters: G ...
- 机器学习--Xgboost调参
Xgboost参数 'booster':'gbtree', 'objective': 'multi:softmax', 多分类的问题 'num_class':10, 类别数,与 multisoftma ...
- xgboost 调参 !
https://jessesw.com/XG-Boost/ http://blog.csdn.net/u010414589/article/details/51153310
- xgboost调参过程
from http://blog.csdn.net/han_xiaoyang/article/details/52665396
- xgboost使用调参
欢迎关注博主主页,学习python视频资源 https://blog.csdn.net/q383700092/article/details/53763328 调参后结果非常理想 from sklea ...
- XGBoost和LightGBM的参数以及调参
一.XGBoost参数解释 XGBoost的参数一共分为三类: 通用参数:宏观函数控制. Booster参数:控制每一步的booster(tree/regression).booster参数一般可以调 ...
- 【新人赛】阿里云恶意程序检测 -- 实践记录10.27 - TF-IDF模型调参 / 数据可视化
TF-IDF模型调参 1. 调TfidfVectorizer的参数 ngram_range, min_df, max_df: 上一篇博客调了ngram_range这个参数,得出了ngram_range ...
随机推荐
- Spring IOC容器的初始化-(三)BeanDefinition的注册
---恢复内容开始--- 前言 在上一篇中有一处代码是BeanDefiniton注册的入口,我们回顾一下. 1.BeanDefiniton在IOC容器注册 首先我们回顾两点,1. 发起注册的地方:2. ...
- bzoj 3501 PA2008 Cliquers Strike Back——贝尔数
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3501 用贝尔三角形 p^2 地预处理 p 以内的贝尔数.可以模(mod-1)(它是每个分解下 ...
- TableView刷新 局部刷新等
1.对整个页面刷新 [ tableView reloadData]; 2.对某一个section刷新 NSIndexSet *indexSet=[[NSIndexSet alloc]initWithI ...
- python 数据库查询结果转对象
#coding:utf-8 from json import dumps, loads, JSONEncoder, JSONDecoder import pickle from app.model.J ...
- 微信小程序的基本认识
小程序与公众号的区别 小程序,不支持关注,消息推送等营销手段. 小程序更倾向于产品,公众号更倾向于营销. 在系统权限方面,小程序能够获得更多. 小程序与APP的区别 小程序,面向微信用户.app面向所 ...
- DFT的理解
在以前学习的离散傅立叶变换(DFT),总是不能理解只是知道公式 X(k) = Σx(n) * WNnk ,也不知道如何得来的. 现在可以聊聊了,因为最近在使用MATLAB实际的操作了所以比以前了 ...
- oracle插入
普通插入方式: insert into t select * from t2; append插入方式: insert /*+append*/ into t select * from t2; Appe ...
- Py修行路 python基础 (二十五)线程与进程
操作系统是用户和硬件沟通的桥梁 操作系统,位于底层硬件与应用软件之间的一层 工作方式:向下管理硬件,向上提供接口 操作系统进行切换操作: 把CPU的使用权切换给不同的进程. 1.出现IO操作 2.固定 ...
- 整合多个py文件接口的unittest。suite执行方法
1.每个接口用例为一个.py文件.内容如下: getAdMakeMoneyList文件: # coding=utf-8import xlrdimport requestsimport unittest ...
- 关于datagridview自动增加行高度和显示全部内容的设置
this.dataGridView1.AutoSizeRowsMode = DataGridViewAutoSizeRowsMode.AllCellsExceptHeaders; //自动调动dat ...