题目描述

某中学有 n 名男同学,m 名女同学和两名老师要排队参加体检。他们排成一条直线,并且任意两名女同学不能相邻,两名老师也不能相邻,那么一共有多少种排法呢?(注意:任意两个人都是不同的)

输入输出格式

输入格式:

只有一行且为用空格隔开的两个非负整数 n 和 m,其含义如上所述。 对于 30%的数据 n<=100,m<=100 对于 100%的数据 n<=2000,m<=2000

输出格式:

输出文件 output.txt 仅包含一个非负整数,表示不同的排法个数。注意答案可能很大。

输入输出样例

输入样例#1:

1  1
输出样例#1:

12

题解:高精+排列组合
n个男生排列A(n,n),然后插上两个老师A(n+1,2),然后插上m个女生
A(n+2,m-1),结果就是A(n,n)*A(n+1,2)*A(n+2,m-1)。
但是发现,两个老师插入时是可以挨在一起的,只要一个女生去他们中间就好了。
把两个老师看成一个男生,是A(n+1,n+1)*A(2,2),中间再插入一个女生
A(n+1,n+1)*A(2,2)*m,然后剩下的m-1个女生再插入,结果是
A(n+1,n+1)*A(2,2)*m*A(n+2,m-1)。
那么总的答案就是
A(n,n)*A(n+1,2)*A(n+3,m)+A(n+1,n+1)*A(2,2)*m+A(n+2,m-1)
化简一下式子最后只要高精乘就可以了。
这是个压位高精吧...背的Candy?模板我也不知道啊...(逃...
一直WA原来是数组开小了...
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#define LL long long
#define B 10000
using namespace std;
LL m,n;
struct Big{
int a[], n;
int& operator [](int x) {return a[x];}
Big():n() {memset(a, , sizeof(a));}
void ini(int x) {a[]=x; n=;}
}ans,p; Big operator *(Big a, int b) {
int g=;
for(int i=; i<=a.n; i++)
g += a[i]*b, a[i] = g%B, g/=B;
if(g) a[++a.n] = g;
return a;
} Big operator *(Big a, Big b) {
Big c;
for(int i=; i<=a.n; i++) {
int g=;
for(int j=; j<=b.n; j++)
g += c[i+j-]+a[i]*b[j], c[i+j-] = g%B, g/=B;
c[i+b.n] = g;
}
c.n = a.n + b.n;
while(c.n> && c[c.n]==) c.n--;
return c;
} Big operator +(Big a, Big b) {
int g=, n=max(a.n, b.n);
for(int i=; i<=n; i++) {
g += i<=a.n ? a[i] : ;
g += i<=b.n ? b[i] : ;
a[i] = g%B, g/=B;
}
a.n = n;
if(g) a[++a.n] = g;
return a;
} Big operator -(Big a, Big b) {
for(int i=; i<=b.n; i++) {
if(a[i]<b[i]) a[i]+=B, a[i+]--;
a[i] -= b[i];
}
int p=b.n+;
while(a[p]<) a[p]+=B, a[++p]--;
while(a.n> && a[a.n]==) a.n--;
return a;
} void Print(Big &a) {
printf("%d", a[a.n]);
for(int i=a.n-; i>=; i--) printf("%04d", a[i]);
} int main(){
scanf("%d%d",&n,&m);ans.a[]=;p.a[]=;
for(int i=;i<=n;i++)ans=ans*i;
ans=ans*n*(n+);
for(int i=n+-m+;i<=n+;i++)ans=ans*i;
for(int i=;i<=n+;i++)p=p*i;
p=p**m;
for(int i=n+-m+;i<=n+;i++)p=p*i;
ans=ans+p;
Print(ans);
return ;
}
 

洛谷 P3223 [HNOI2012]排队的更多相关文章

  1. [NOIP2013提高&洛谷P1966]火柴排队 题解(树状数组求逆序对)

    [NOIP2013提高&洛谷P1966]火柴排队 Description 涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度. 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相 ...

  2. 洛谷P3222 [HNOI2012]射箭(计算几何,半平面交,双端队列)

    洛谷题目传送门 设抛物线方程为\(y=ax^2+bx(a<0,b>0)\),我们想要求出一组\(a,b\)使得它尽可能满足更多的要求.这个显然可以二分答案. 如何check当前的\(mid ...

  3. BZOJ2730或洛谷3225 [HNOI2012]矿场搭建

    BZOJ原题链接 洛谷原题链接 显然在一个点双连通分量里,无论是哪一个挖煤点倒塌,其余挖煤点就可以互相到达,而对于一个点双连通分量来说,与外界的联系全看割点,所以我们先用\(tarjan\)求出点双连 ...

  4. 洛谷 P3225 [HNOI2012]矿场搭建 解题报告

    P3225 [HNOI2012]矿场搭建 题目描述 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤 ...

  5. 【刷题】洛谷 P1966 火柴排队

    题目描述 涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度. 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相同, 两列火柴之间的距离定义为: ∑(ai-bi)^2 其中 ai 表示 ...

  6. P3223 [HNOI2012]排队

    题目描述 某中学有 n 名男同学,m 名女同学和两名老师要排队参加体检.他们排成一条直线,并且任意两名女同学不能相邻,两名老师也不能相邻,那么一共有多少种排法呢?(注意:任意两个人都是不同的) 输入输 ...

  7. 洛谷 P1966 火柴排队 解题报告

    P1966 火柴排队 题目描述 涵涵有两盒火柴,每盒装有 \(n\) 根火柴,每根火柴都有一个高度. 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相同, 两列火柴之间的距离定义为: \(\s ...

  8. 洛谷 P3224 [HNOI2012]永无乡 解题报告

    P3224 [HNOI2012]永无乡 题目描述 永无乡包含 \(n\) 座岛,编号从 \(1\) 到 \(n\) ,每座岛都有自己的独一无二的重要度,按照重要度可以将这 \(n\) 座岛排名,名次用 ...

  9. Luogu P3223 [HNOI2012]排队 组合

    本来做了一道  P4901 排队 后来发现自己做错题了...到也都是数学qwq 这题最恶心的就是两只(雾)老师. 那我们分类讨论: 1.两个老师之间是男生: $ A(n,n)*A(n+1,2)*A(n ...

随机推荐

  1. CSS清除浮动使父级元素展开的三个方法

    点评:一个没有设置高度的容器div内如果存在浮动元素(即使用了属性float:left或者float:right),那么该父级元素会无法展开,下面举个例子为大家详细介绍下,希望对大家有所帮助 一个没有 ...

  2. pyhton3 re模块

    本文转自 AstralWind 的博客:Python正则表达式指南 特来收藏 1. 正则表达式基础 1.1. 简单介绍 正则表达式并不是Python的一部分.正则表达式是用于处理字符串的强大工具,拥有 ...

  3. 【LeetCode】【动态规划】Edit Distance

    描述 Given two words word1 and word2, find the minimum number of operations required to convert word1  ...

  4. MongoDB的Find详解(一)

    1.指定返回的键 db.[documentName].find ({条件},{键指定}) 数据准备persons.json var persons = [{name:"jim",a ...

  5. How to Google

    程序员的基础生存技能 -- 关于搜索引擎的小贴士 如果票选近二十年最伟大的发明,我相信搜索引擎肯定会占据一个不容小觑的位置,它不单是一项发明,更是一项成就,最大程度消灭了信息的不平等.既然人人都可以接 ...

  6. centos下安装python2.7.9和pip以及数据科学常用的包

    以前一直用ubantu下的python,ubantu比较卡.自己倾向于使用centos,但默认的python版本太低,所以重新装了一个python和ipython centos6.5安装python2 ...

  7. MVC 中 System.Web.Optimization 找不到引用

    在MVC4的开发中,如果创建的项目为空MVC项目,那么在App_Start目录下没有BundleConfig.cs项的内容,在手动添加时在整个库中都找不到:System.Web.Optimizatio ...

  8. 通过yum安装mysql

    在linux中安装数据库首选MySQL,Mysql数据库的第一个版本就是发行在Linux系统上,其他选择还可以有postgreSQL,oracle等 在Linux上安装mysql数据库,我们可以去其官 ...

  9. Codeforces Round #373 (Div. 2) E. Sasha and Array 矩阵快速幂+线段树

    E. Sasha and Array time limit per test 5 seconds memory limit per test 256 megabytes input standard ...

  10. cern-cloud-architecture

    规模: 总体: 有26个Cell 一个数据中心运行控制节点,另外一个仅仅运行nova cell 统一,灵活 nova-api运行在VM中,当然需要至少一个部署在物理机上来启动VM. 每个cell只有一 ...