动态规划:LCS
先上状态转移方程,还是很容易看明白的

例题是Codevs的1862,这个题不是实现了方程就可以了的,还要完成一个事情那就是计数,数一数到底有多少个最长公共子序列
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=;
const int p=1e8;
char a[maxn],b[maxn];
int dp[maxn][maxn],f[maxn][maxn];
int main()
{
scanf("%s%s",a+,b+);
int al=strlen(a+)-;
int bl=strlen(b+)-;
for(int i=;i<=al;i++) f[i][]=;
for(int i=;i<=bl;i++) f[][i]=;
for(int i=;i<=al;i++)
for(int j=;j<=bl;j++)
{
if(a[i]==b[j])
{
dp[i][j]=dp[i-][j-]+;
int k1=,k2=;
if(dp[i][j]==dp[i-][j]) k1=;
if(dp[i][j]==dp[i][j-]) k2=;
f[i][j]=f[i-][j-]+(k1*f[i-][j])+(k2*f[i][j-]);
f[i][j]=(f[i][j]+p)%p;
}
else
{
dp[i][j]=max(dp[i-][j],dp[i][j-]);
int k1=,k2=,k3=;
if(dp[i][j]==dp[i-][j]) k1=;
if(dp[i][j]==dp[i][j-]) k2=;
if(dp[i][j]==dp[i-][j-]) k3=;
f[i][j]=(k1*f[i-][j])+(k2*f[i][j-])-(k3*f[i-][j-]);
f[i][j]=(f[i][j]+p)%p;
}
}
printf("%d\n%d\n",dp[al][bl],f[al][bl]);
return ;
}
在这里我们用dp记录长度,用f记录个数
由于输入是以“.”结尾的,所以读入的时候有些许的变化
scanf("%s%s",a+,b+);
int al=strlen(a+)-;
int bl=strlen(b+)-;
这样读入的时候真正的字符串的下标是从a+1开始的,循环的时候从1开始循环,到strlen(a+1)结束
因为结尾字符不属于串,所以给al--就好了
动态规划:LCS的更多相关文章
- 算法起步之动态规划LCS
原文:算法起步之动态规划LCS 前一篇文章我们了解了什么是动态规划问题,这里我们再来看动态规划另一个经典问题,最长公共子序列问题(LCS),什么是子序列,我们定义:一个给定序列将其中的0个或者多个元素 ...
- POJ1080 Human Gene Functions 动态规划 LCS的变形
题意读了半年,唉,给你两串字符,然后长度不同,你能够用'-'把它们补成同样长度,补在哪里取决于得分,它会给你一个得分表,问你最大得分 跟LCS非常像的DP数组 dp[i][j]表示第一个字符串取第i个 ...
- 动态规划-LCS最长公共子序列
#include<iostream> #include<cstdio> #include<cstring> #include<string> using ...
- 动态规划 LCS,LIS
1.最大连续子序列 dp[i]=max(dp[i-1]+a[i],a[i]) 以i为结尾 2.最大不连续子序列 dp[i]=max(dp[j]+a[i],dp[j]) 3.最大连续递增子序列 if a ...
- DP动态规划———LCS最长公共子序列
递推公式: ]==b[j-]) { dp[i][j]=dp[i-][j-]+; } else { dp[i][j]=max(dp[i-][j],dp[i][j-]); } 完整模板代码: int LC ...
- Luogu2543[AHOI2004]奇怪的字符串 (动态规划 LCS)
04年的省选这么water吗,开个滚动数组算了 #include <iostream> #include <cstdio> #include <cstring> # ...
- UVA 10066 The Twin Towers(LCS)
Problem B The Twin Towers Input: standard input Output: standard output Once upon a time, in an anci ...
- LCS最大公共子序列问题
在生物应用中,经常需要比较两个(或多个)不同生物体的DNA, 例如:某种生物的DNA可能为S1=ACCGGTCGAGTGCGCGGAAGCCGGCCGAA, 另一种生物的DNA可能为S2=GTCGTT ...
- 2016级算法期末上机-G.中等·Bamboo's Fight with DDLs II
中等·Bamboo's Fight with DDLs II 分析 一句话:给定字符串,求最长回文子序列长度,动态规划LCS思想的进阶应用 具体思路如下: 对于任意字符串,如果头尾字符相同,那么字符串 ...
- 动态规划之最长公共子序列(LCS)
转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...
随机推荐
- VS2017发布微服务到docker
1.本文档以eShopOnContainers.sevices.identity为描述对象,并包含docker for windows的部分配置流程. 2.前置环境:win10操作系统.安装VS201 ...
- [bzoj1359][Baltic2009]Candy
给定N个数对$(T_i,S_i)$,表示时刻$S_i$时在位置$T_i$处出现一粒糖果.有一些机器人可供使用,每个机器人可花费一单位时间向相邻位置移动.要求用最少的机器人接到全部糖果.时刻0时机器人位 ...
- LeetCode:22. Generate Parentheses(Medium)
1. 原题链接 https://leetcode.com/problems/generate-parentheses/description/ 2. 题目要求 给出一个正整数n,请求出由n对合法的圆括 ...
- Python操作nosql数据库之redis
一.NoSQL的操作 NoSQL,泛指非关系型的数据库.随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不 ...
- 通过repcached实现memcached主从复制
一.环境 服务器A:ubuntu server 12.04(192.168.1.111) 服务器B:ubuntu server 12.04 (47.50.13.111) 二.memcached安装 s ...
- 第二十二篇 正在表达式 re模块
re模块****** 就本质而言,正则表达式时一种小型的,高度专业化的编程语言,在python里,它内嵌在python中,并通过re模块实现.正则表达式模式被编译成一系列的字节码.然后用C编写的匹配引 ...
- Python简要标准库(5)
hashlib Python的hashlib提供了常见的摘要算法,如MD5,SHA1等等. 基本的生成MD密匙的函数 import hashlib md5 = hashlib.md5() md5.up ...
- JavaScript调试中Console命令
JS调试中,用console.log 感觉比 alert 好用,不用弹出窗口,还要关闭.除了console.log()其他命令没怎么用过,先在这里记一下,用到时在看看 一.显示信息的命令 consol ...
- docker容器中启动kvm虚拟机
.安装docker yum install docker systemctl start docker.service systemctl enable docker.service .拉取cento ...
- redis基础和通用key操作
redis是什么? redis开源的,构建于内存的数据结构的nosql数据库.常被用于数据存储,缓存处理和消息处理. redis的优势? 1.极高的读写能力 2.丰富的数据类型 3.原子性操作 4.支 ...