先上状态转移方程,还是很容易看明白的

例题是Codevs的1862,这个题不是实现了方程就可以了的,还要完成一个事情那就是计数,数一数到底有多少个最长公共子序列

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=;
const int p=1e8;
char a[maxn],b[maxn];
int dp[maxn][maxn],f[maxn][maxn];
int main()
{
scanf("%s%s",a+,b+);
int al=strlen(a+)-;
int bl=strlen(b+)-;
for(int i=;i<=al;i++) f[i][]=;
for(int i=;i<=bl;i++) f[][i]=;
for(int i=;i<=al;i++)
for(int j=;j<=bl;j++)
{
if(a[i]==b[j])
{
dp[i][j]=dp[i-][j-]+;
int k1=,k2=;
if(dp[i][j]==dp[i-][j]) k1=;
if(dp[i][j]==dp[i][j-]) k2=;
f[i][j]=f[i-][j-]+(k1*f[i-][j])+(k2*f[i][j-]);
f[i][j]=(f[i][j]+p)%p;
}
else
{
dp[i][j]=max(dp[i-][j],dp[i][j-]);
int k1=,k2=,k3=;
if(dp[i][j]==dp[i-][j]) k1=;
if(dp[i][j]==dp[i][j-]) k2=;
if(dp[i][j]==dp[i-][j-]) k3=;
f[i][j]=(k1*f[i-][j])+(k2*f[i][j-])-(k3*f[i-][j-]);
f[i][j]=(f[i][j]+p)%p;
}
}
printf("%d\n%d\n",dp[al][bl],f[al][bl]);
return ;
}

在这里我们用dp记录长度,用f记录个数

由于输入是以“.”结尾的,所以读入的时候有些许的变化

    scanf("%s%s",a+,b+);
int al=strlen(a+)-;
int bl=strlen(b+)-;

这样读入的时候真正的字符串的下标是从a+1开始的,循环的时候从1开始循环,到strlen(a+1)结束

因为结尾字符不属于串,所以给al--就好了

动态规划:LCS的更多相关文章

  1. 算法起步之动态规划LCS

    原文:算法起步之动态规划LCS 前一篇文章我们了解了什么是动态规划问题,这里我们再来看动态规划另一个经典问题,最长公共子序列问题(LCS),什么是子序列,我们定义:一个给定序列将其中的0个或者多个元素 ...

  2. POJ1080 Human Gene Functions 动态规划 LCS的变形

    题意读了半年,唉,给你两串字符,然后长度不同,你能够用'-'把它们补成同样长度,补在哪里取决于得分,它会给你一个得分表,问你最大得分 跟LCS非常像的DP数组 dp[i][j]表示第一个字符串取第i个 ...

  3. 动态规划-LCS最长公共子序列

    #include<iostream> #include<cstdio> #include<cstring> #include<string> using ...

  4. 动态规划 LCS,LIS

    1.最大连续子序列 dp[i]=max(dp[i-1]+a[i],a[i]) 以i为结尾 2.最大不连续子序列 dp[i]=max(dp[j]+a[i],dp[j]) 3.最大连续递增子序列 if a ...

  5. DP动态规划———LCS最长公共子序列

    递推公式: ]==b[j-]) { dp[i][j]=dp[i-][j-]+; } else { dp[i][j]=max(dp[i-][j],dp[i][j-]); } 完整模板代码: int LC ...

  6. Luogu2543[AHOI2004]奇怪的字符串 (动态规划 LCS)

    04年的省选这么water吗,开个滚动数组算了 #include <iostream> #include <cstdio> #include <cstring> # ...

  7. UVA 10066 The Twin Towers(LCS)

    Problem B The Twin Towers Input: standard input Output: standard output Once upon a time, in an anci ...

  8. LCS最大公共子序列问题

    在生物应用中,经常需要比较两个(或多个)不同生物体的DNA, 例如:某种生物的DNA可能为S1=ACCGGTCGAGTGCGCGGAAGCCGGCCGAA, 另一种生物的DNA可能为S2=GTCGTT ...

  9. 2016级算法期末上机-G.中等·Bamboo's Fight with DDLs II

    中等·Bamboo's Fight with DDLs II 分析 一句话:给定字符串,求最长回文子序列长度,动态规划LCS思想的进阶应用 具体思路如下: 对于任意字符串,如果头尾字符相同,那么字符串 ...

  10. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

随机推荐

  1. C++11中initializer lists的使用

    Before C++11,there was no easy way to do things like initialize a std::vector or std::map(or a custo ...

  2. 10 TCP 传输控制协议 UDP区别

    1.tcp和udp区别 2.TCP通信模型 生活中的电话机 如果想让别人能更够打通咱们的电话获取相应服务的话,需要做一下几件事情: 买个手机 插上手机卡 设计手机为正常接听状态(即能够响铃) 静静的等 ...

  3. jpa Specification复杂查询

    public List<Receipts> test(List<String> costIds){ Specification<Receipts> specific ...

  4. FPGA等占空比奇偶分频和半整数分频

    1. 偶数分频比较简单,如果分频系数是N(如果N是偶数,那么N/2是整数),那么在输入时钟的每隔N/2个周期时(计数器从0到N/2-1),改变输出时钟的电平即可得到50%固定占空比的时钟.需要的代码如 ...

  5. PADS9.5打开Altium designer09的原理图

    1. 打开PADS Logic原理图工具,文件---导入 2. 选择Protel DXP这个选项,找到相应的文件即可打开.

  6. Django admin源码剖析

    单例模式 单例模式(Singleton Pattern)是一种常用的软件设计模式,该模式的主要目的是确保某一个类只有一个实例存在.当你希望在整个系统中,某个类只能出现一个实例时,单例对象就能派上用场. ...

  7. 第二篇 Postman的高阶使用之配置全局变量及局部变量的调用及设置方法(手动方法)

    第五篇主要写了关于postman的基本使用,重点是如果发送json请求,为什么要将发送json请求呢, 一是目前大多数的请求已经倾向于发送json格式,二是本人太懒了,不想一个字段一个字段的添加到参数 ...

  8. mysql字段名与关键字重复解决办法

    mysql 关键字与字段名相同,插入或者修改里会报错 解决办法: 1.改字段名,如果库里面表结构关系不复杂,修改字段名就解决 2.在插入或者修改字段时,字段名加上  ` 包上,注意:这里不是引号,是英 ...

  9. annoy安装

    yum install gcc-c++ #linux下需安装c++编译器 sudo pip install annoy

  10. CVPR2018: Generative Image Inpainting with Contextual Attention 论文翻译、解读

    注:博主是大四学生,翻译水平可能比不上研究人员的水平,博主会尽自己的力量为大家翻译这篇论文.翻译结果仅供参考,提供思路,翻译不足的地方博主会标注出来,请大家参照原文,请大家多多关照. 转载请务必注明出 ...