完全平方数

Time Limit: 10 Sec  Memory Limit: 128 MB
[Submit][Status][Discuss]

Description

  小X自幼就很喜欢数。
  但奇怪的是,他十分讨厌完全平方数。
  他觉得这些数看起来很令人难受。
  由此,他也讨厌所有是完全平方数的正整数倍的数。
  然而这丝毫不影响他对其他数的热爱。
  这天是小X的生日,小 W 想送一个数给他作为生日礼物。
  当然他不能送一个小X讨厌的数。他列出了所有小X不讨厌的数,然后选取了第 K个数送给了小X。
  小X很开心地收下了。
  然而现在小 W 却记不起送给小X的是哪个数了。
  你能帮他一下吗?

Input

  包含多组测试数据。文件第一行有一个整数 T,表示测试数据的组数。
  第 2 至第 T+1 行每行有一个整数 Ki,描述一组数据,含义如题目中所描述。

Output

  含 T 行,分别对每组数据作出回答。第 i 行输出相应的
  第 Ki 个不是完全平方数的正整数倍的数。

Sample Input

  4
  1
  13
  100
  1234567

Sample Output

  1
  19
  163
  2030745

HINT

  对于 100% 的数据有 1 ≤ Ki ≤ 10^9, T ≤ 50

Main idea

  询问第 k 个不含完全平方因子的数。

Source  

  显然我们可以简化一下问题,二分答案。那么我们就只需要知道:1~n中 不含完全平方因子 的数的个数。

  然后我们思考一下容斥,用(总数-完全平方数个数):完全平方数个数 = 至少有1个质数平方因子的数 - 至少2个质数平方因子的数 + 至少3个质数平方因子的数……
  (假设你有一堆质数 {P_1, ..., P_n},A_i 表示的是 包含 P_i^2 作为因子的数的集合)  

  也就是:奇数个质数平方因子的数 - 偶数个质数平方因子的数
  然后我们发现,那么可以枚举一个d,删除d^2相关,这时候系数也就是μ(d),求一下莫比乌斯函数即可。当d有奇数个质数因子的时候,删除的是有奇数个质数平方因子中d^2的倍数。
  整理成式子也就是:

Code

 #include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef long long s64; const int ONE = ; int T;
int n,m;
int prime[ONE],miu[ONE],isp[ONE],p_num; int get()
{
int res=,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} void Getmiu(int MaxN)
{
miu[] = ;
for(int i=; i<=MaxN; i++)
{
if(!isp[i])
isp[i] = , prime[++p_num] = i, miu[i] = -;
for(int j=; j<=p_num, i*prime[j]<=MaxN; j++)
{
isp[i * prime[j]] = ;
if(i % prime[j] == )
{
miu[i * prime[j]] = ;
break;
}
miu[i * prime[j]] = -miu[i];
}
}
} s64 Check(s64 n)
{
s64 res = ,Q = sqrt(n);
for(int d=; d<=Q; d++)
res += miu[d] * (n/(d*d));
return res;
} void Solve()
{
n = get();
s64 l = , r = 2e9;
while( l < r- )
{
s64 mid = (l+r)>>;
if(Check(mid) < n) l = mid;
else r = mid;
} if(Check(r) <= n) printf("%d", r);
else printf("%d", l);
printf("\n");
} int main()
{
Getmiu(ONE-);
T = get();
while(T--)
Solve();
}

【BZOJ2440】完全平方数 [莫比乌斯函数]的更多相关文章

  1. BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数

    BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...

  2. BZOJ2440/洛谷P4318 [中山市选2011]完全平方数 莫比乌斯函数

    题意:找到第k个无平方因子数. 解法:这道题非常巧妙的运用了莫比乌斯函数的性质! 解法参考https://www.cnblogs.com/enzymii/p/8421314.html这位大佬的.这里我 ...

  3. bzoj2440(莫比乌斯函数)

    bzoj2440 题意 求第 k 个不是完全平方数(除 1 以外)的正倍数的数. 分析 利用二分法求解,二分 x ,判断 x 是否是第 k 个数即可,那么我们就要计算 [1, x] 有几个符合条件的数 ...

  4. bzoj2440 完全平方数 莫比乌斯值+容斥+二分

    莫比乌斯值+容斥+二分 /** 题目:bzoj2440 完全平方数 链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2440 题意:求第k个小x数 ...

  5. Bzoj 2440: [中山市选2011]完全平方数(莫比乌斯函数+容斥原理+二分答案)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平 ...

  6. BZOJ.2440.[中山市选2011]完全平方数(莫比乌斯函数 二分)

    题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 题意即求第\(k\)个无平方因子数. 无平方因子数(Square-Free Number),即分解之后所有质因 ...

  7. BZOJ2440:[中山市选2011]完全平方数(莫比乌斯函数)

    Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱. 这天是 ...

  8. 【BZOJ 2440】【中山市选 2011】完全平方数 莫比乌斯函数+容斥原理

    网上PoPoQQQ的课件: •题目大意:求第k个无平方因子数 •无平方因子数(Square-Free Number),即分解之后所有质因数的次数都为1的数 •首先二分答案 问题转化为求[1,x]之间有 ...

  9. BZOJ 2440 [中山市选2011]完全平方数 ——莫比乌斯函数

    $\sum_{i=1}^n[i==d^2*p]$ 其中p无平方因子$=\sum_{d^2\mid n,d>=2}\sum_{i=1}^{\lfloor {n/d^2} \rfloor} \lef ...

随机推荐

  1. howto:在构建基于debian的docker基础镜像时,更换国内包源

    debian经常被用作构建应用镜像的基础镜像,如微软在构建linux下的dotnetcore基础镜像时,提供了基于debian 8(jessie)和debian 9(stretch)的镜像. 由于这些 ...

  2. Borland和Micorsoft的对话(转载自月光软件网)

      Borland与Microsoft关于Delphi的对话 Bear 1.Delphi较贵  一套Delphi的价格大约相当于两套Visual Studio  ------------------- ...

  3. js 操作表格行数的删减

    沉溺了好几个月了,自从年假回来就一直在忙换工作的事情: 新环境.新同事,一如既往的工作, 那么闲话不多说,前两天师妹问我要一个类似于添加和删除的demo:闲暇时间我就参照一些代码写了一下, (发现有错 ...

  4. 项目总结(二)->一些常用的工具浅谈

    程序员是否应该沉迷于一个编程的世界,为了磨砺自己的编程技能而两耳不闻窗外事,一心只为写代码:还是说要做到各有涉猎,全而不精.关于这点每个人心中都有一套自己的工作体系和方法体系. 我一直认为,程序员你首 ...

  5. 【个人训练】(POJ1837)Balance

    这几天抓住国庆的黄金时间(因为没有女朋友,天天刷题emmmm 其实还在肝少前还要捞秋刀鱼) ,重点攻克掉几个基本的地方:搜索.dp.图论.这几天的题目应该就是这些范围. 题意 原题的意思大概是这样的, ...

  6. 「日常训练」Common Subexpression Elimination(UVa-12219)

    今天做的题目就是抱佛脚2333 懂的都懂. 这条题目干了好几天,最后还是参考别人的代码敲出来了,但是自己独立思考了两天多,还是有收获的. 思路分析 做这条题我是先按照之前的那条题目(The SetSt ...

  7. 基于eth快速发行自己的数字货币

    我们总在寻觅,也不断迷失. 像一颗飘摇的韭菜,彷徨而又无奈,无奈又彷徨. 如果你问我未来,我不知去向何方 我只知道生长,恣意野蛮. 我们不断在追寻一款爆款的项目,一个百倍币千倍币,却没有想到,实际上做 ...

  8. 用JAVA写一个多线程程序,写四个线程,其中二个对一个变量加1,另外二个对一个变量减1

    package com.ljn.base; /** * @author lijinnan * @date:2013-9-12 上午9:55:32 */ public class IncDecThrea ...

  9. BZOJ 4029 HEOI2015 定价 数位贪心

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4029 题意概述:对于一个数字的荒谬程度定义如下:删除其所有的后缀0,然后得到的数字长度为a ...

  10. Packet filtering with Linux & NAT

    http://www.linuxfocus.org/ChineseGB/May2003/article289.shtml Gateway, Proxy-Arp 和 Ethernet Bridge ? ...