(找到最大的整数k使得n! % s^k ==0) (求n!在b进制下末尾0的个数) (区间满足个数)
题目:https://codeforces.com/contest/1114/problem/C
将b分解为若干素数乘积,记录每个素数含多少次方 b = p1^y1·p2^y2·...·pm^ym.
然后求n!种每个素数含多少次方n ! = p1^x1·p2^x2·...·pm^xm·
答案就是
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<string>
#include<cstring>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<cmath>
#include<sstream>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const ll inf=0x3f3f3f3f;
ll n,b,res=1e18;
void solve(ll x,ll num){ //每个质因子 拥有的数量
ll tp=,ans=;
while(tp<=n/x){ //不能用tp*x会爆精度,有多少个x,就是先看有多少个x,再x^2,x^3,直到>n
tp*=x;
ans+=n/tp;
}
res=min(res,ans/num);
}
int main(){
std::ios::sync_with_stdio();
cin>>n>>b;
ll t=b;
for(ll i=;i*i<=t;++i){ //分解质因子
if(t%i==){
ll num=;
while(t%i==){
t/=i;
num++;
}
solve(i,num);
}
}
if(t>) solve(t,);
cout<<res<<endl;
return ;
}
十进制范围 [l,r] 内有多少整数满足在 k 进制下末尾恰好有 m 个 0
题目:https://acm.ecnu.edu.cn/contest/140/problem/D/
如果一个数的m进制后有k个零,就一定能被mk 整除,而在含k个零中,一定存在含k+1个零的(含k+1个零就意味着一定含k个零),在1,2,3....x中,能被mk 整除的有⌊x/mk⌋个,所以只含k个零的个数有ansx = ⌊x/mk⌋-⌊x/mk+1⌋,区间的话就是ansr - ansl-1 注意是l-1
#include<bits/stdc++.h>
using namespace std ;
#define ll long long
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
ll l,r;int k,m;
scanf("%lld%lld%d%d",&l,&r,&k,&m);
l--; while(m--)
{
r/=k;
l/=k;
}
ll ans1=l-l/k,ans2=r-r/k;
printf("%lld\n",ans2-ans1);
}
}
(找到最大的整数k使得n! % s^k ==0) (求n!在b进制下末尾0的个数) (区间满足个数)的更多相关文章
- n!在k进制下的后缀0
问n! 转化成k进制后的位数和尾数的0的个数.[UVA 10061 How many zeros and how many digits?] Given a decimal integer numbe ...
- 51 Nod 1116 K进制下的大数
1116 K进制下的大数 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 收藏 关注 有一个字符串S,记录了一个大数,但不知这个大数是多少进制的,只知道这个数 ...
- bzoj 3000 Big Number 估算n!在k进制下的位数 斯特林公式
题目大意 求n!在k进制下的位数 2≤N≤2^31, 2≤K≤200 分析 作为数学没学好的傻嗨,我们先回顾一下log函数 \(\log_a(b)=\frac 1 {log_b(a)}\) \(\lo ...
- 求x!在k进制下后缀零的个数(洛谷月赛T1)
求x!在k进制下后缀和的个数 20分: 求十进制下的x!后缀和的个数 40分: 高精求阶乘,直接模拟过程 (我不管反正我不打,本蒟蒻最讨厌高精了) 60分 利用一个定理(网上有求x!在 ...
- 陕西师范大学第七届程序设计竞赛网络同步赛 F WWX的礼物【数学/k进制下x^n的位数/log】
链接:https://www.nowcoder.com/acm/contest/121/F来源:牛客网 题目描述 WWX的女朋友送给了他一个礼物,可是礼物却被一把K进制密码锁锁住了.在礼物盒上还有一张 ...
- 数位DP 求K进制下0~N的每个数每位上出现的数的总和
好久没写博客了,因为感觉时间比较紧,另一方面没有心思,做的题目比较浅也是另一方面. 热身赛第二场被血虐了好不好,于是决定看看数位DP吧. 进入正题: 如题是一道经(简)典(单)的数位dp. 第一步,对 ...
- 51nod 1116 K进制下的大数
你万万想不到,Long Long 就能存下的数据 #include <iostream> #include <cstdio> #include <cstdlib> ...
- [51nod1116]K进制下的大数
解题关键:$A\% (k - 1) = (A[0] + A[1]*k + A[2]*{k^2} + ...A[n]*{k^n})\% (k - 1) = (A[0] + A[1] + ...A[n]) ...
- light oj 1045 - Digits of Factorial K进制下N!的位数
1045 - Digits of Factorial Factorial of an integer is defined by the following function f(0) = 1 f(n ...
随机推荐
- Django--form保存用户输入内容
需求 用户提交form时,如果报错,页面中的用户信息还在(除了密码),没有被刷新掉,不用用户再次输入. 速查 views.py 1 2 3 def login(request): obj = ...
- WEB前端--CSS
一.认识CSS 1.概念 CSS(Cascading Style Sheet,层叠样式表),可以将网页制作的更加绚丽多彩.它可以有效的对页面的布局.字体.颜色.背景和其它效果实现更加精确的控制. 2. ...
- DataTable 设置primarykey 后进行 Merge操作
1.先查看概念 可以看highplayer博客 http://blog.csdn.net/highplayer/article/details/6613817 2. protected void st ...
- C#中对DataTable进行全连接后group by,orderby
var result = from temp2 in ( from u in u ...
- Sublime for MacOS 使用技巧
1.创建软链接,使用命令直接打开sublime编辑器 ln -s "/Applications/Sublime Text.app/Contents/SharedSupport/bin/sub ...
- 20145218张晓涵_Exp5 MSF基础应用
20145218张晓涵_Exp5 MSF基础应用 实验原理 MS08-067漏洞描述 MS08-067漏洞的全称为"Windows Server服务RPC请求缓冲区溢出漏洞",如果 ...
- jQuery事件(持续更新中)
方法 描述 bind() 向匹配元素附加一个或更多事件处理器 blur() 触发.或将函数绑定到指定元素的 blur 事件 change() 触发.或将函数绑定到指定元素的 change 事件 cli ...
- NET上传大文件出现网页无法显示的问题 默认的上传文件大小是4M
需要在配置文件处进行修改 web.config中的<system.web></system.web>内加入如下代码: <httpRuntime executionTime ...
- SQL Server 2012自动备份
SQL 2012和2008一样,都可以做维护计划,来对数据库进行自动的备份. 现在做这样一个数据库维护的计划,每天0点对数据库进行差异备份,每周日0点对数据库进行完全备份,并且每天晚上10点删除一次过 ...
- wp后台更新瓷片
下载源码 还有一种方式,更新瓷片方式 1. /// <summary> /// 定时更新磁贴 /// </summary> public class ShellUpdate { ...