题目:https://codeforces.com/contest/1114/problem/C

将b分解为若干素数乘积,记录每个素数含多少次方 b = p1^yp2^y2·...·pm^ym.

然后求n!种每个素数含多少次方n ! = p1^xp2^x2·...·pm^xm·

答案就是

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<string>
#include<cstring>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<cmath>
#include<sstream>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const ll inf=0x3f3f3f3f;
ll n,b,res=1e18;
void solve(ll x,ll num){ //每个质因子 拥有的数量
ll tp=,ans=;
while(tp<=n/x){ //不能用tp*x会爆精度,有多少个x,就是先看有多少个x,再x^2,x^3,直到>n
tp*=x;
ans+=n/tp;
}
res=min(res,ans/num);
}
int main(){
std::ios::sync_with_stdio();
cin>>n>>b;
ll t=b;
for(ll i=;i*i<=t;++i){ //分解质因子
if(t%i==){
ll num=;
while(t%i==){
t/=i;
num++;
}
solve(i,num);
}
}
if(t>) solve(t,);
cout<<res<<endl;
return ;
}

十进制范围 [l,r] 内有多少整数满足在 k 进制下末尾恰好有 m 个 0

题目:https://acm.ecnu.edu.cn/contest/140/problem/D/

如果一个数的m进制后有k个零,就一定能被m 整除,而在含k个零中,一定存在含k+1个零的(含k+1个零就意味着一定含k个零),在1,2,3....x中,能被m 整除的有⌊x/mk⌋个,所以只含k个零的个数有ansx = ⌊x/mk⌋-⌊x/mk+1⌋,区间的话就是ansr - ansl-1 注意是l-1

#include<bits/stdc++.h>
using namespace std ;
#define ll long long
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
ll l,r;int k,m;
scanf("%lld%lld%d%d",&l,&r,&k,&m);
l--; while(m--)
{
r/=k;
l/=k;
}
ll ans1=l-l/k,ans2=r-r/k;
printf("%lld\n",ans2-ans1);
}
}

(找到最大的整数k使得n! % s^k ==0) (求n!在b进制下末尾0的个数) (区间满足个数)的更多相关文章

  1. n!在k进制下的后缀0

    问n! 转化成k进制后的位数和尾数的0的个数.[UVA 10061 How many zeros and how many digits?] Given a decimal integer numbe ...

  2. 51 Nod 1116 K进制下的大数

    1116 K进制下的大数  基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题  收藏  关注 有一个字符串S,记录了一个大数,但不知这个大数是多少进制的,只知道这个数 ...

  3. bzoj 3000 Big Number 估算n!在k进制下的位数 斯特林公式

    题目大意 求n!在k进制下的位数 2≤N≤2^31, 2≤K≤200 分析 作为数学没学好的傻嗨,我们先回顾一下log函数 \(\log_a(b)=\frac 1 {log_b(a)}\) \(\lo ...

  4. 求x!在k进制下后缀零的个数(洛谷月赛T1)

    求x!在k进制下后缀和的个数 20分:     求十进制下的x!后缀和的个数 40分: 高精求阶乘,直接模拟过程 (我不管反正我不打,本蒟蒻最讨厌高精了) 60分     利用一个定理(网上有求x!在 ...

  5. 陕西师范大学第七届程序设计竞赛网络同步赛 F WWX的礼物【数学/k进制下x^n的位数/log】

    链接:https://www.nowcoder.com/acm/contest/121/F来源:牛客网 题目描述 WWX的女朋友送给了他一个礼物,可是礼物却被一把K进制密码锁锁住了.在礼物盒上还有一张 ...

  6. 数位DP 求K进制下0~N的每个数每位上出现的数的总和

    好久没写博客了,因为感觉时间比较紧,另一方面没有心思,做的题目比较浅也是另一方面. 热身赛第二场被血虐了好不好,于是决定看看数位DP吧. 进入正题: 如题是一道经(简)典(单)的数位dp. 第一步,对 ...

  7. 51nod 1116 K进制下的大数

    你万万想不到,Long Long 就能存下的数据 #include <iostream> #include <cstdio> #include <cstdlib> ...

  8. [51nod1116]K进制下的大数

    解题关键:$A\% (k - 1) = (A[0] + A[1]*k + A[2]*{k^2} + ...A[n]*{k^n})\% (k - 1) = (A[0] + A[1] + ...A[n]) ...

  9. light oj 1045 - Digits of Factorial K进制下N!的位数

    1045 - Digits of Factorial Factorial of an integer is defined by the following function f(0) = 1 f(n ...

随机推荐

  1. Tensorflow学习(练习)—CPU训练模型

    Mask R-CNN - Train on Shapes Dataset This notebook shows how to train Mask R-CNN on your own dataset ...

  2. 532. K-diff Pairs in an Array绝对值差为k的数组对

    [抄题]: Given an array of integers and an integer k, you need to find the number of unique k-diff pair ...

  3. 面试题:Java集合面试题(40道) 背1

    Java集合框架为Java编程语言的基础,也是Java面试中很重要的一个知识点.这里,我列出了一些关于Java集合的重要问题和答案. 1.Java集合框架是什么?说出一些集合框架的优点? 每种编程语言 ...

  4. p5156 [USACO18DEC]Sort It Out

    传送门 分析 我们发现对于没有发现的点相对位置不会发生改变 于是我们可以吧问题转化为求一个lis 于是我们字典序第k小的答案就是字典序第k大的lis 代码 #include<iostream&g ...

  5. C++读取txt文件(VS)

    最常用的方法?https://www.cnblogs.com/nkzhangcheng/p/7722568.html https://blog.csdn.net/a125930123/article/ ...

  6. 注册 asp.net IIS

    C:\Windows\Microsoft.NET\Framework64\v4.0.30319/aspnet_regiis.exe -i

  7. Hackfive 使用TextSwitcher和ImageSwitcher实现平滑过渡

    1. 应用场景: 通过向左和向右的导航按钮浏览日期列表 在日期选择空间中改变日期 倒计时始终 新闻刚要 2.用到的知识点是:     TextSwitcher和ImageSwitcher     Te ...

  8. 从头开始学eShopOnContainers——开发环境要求

    一.简介 eShopOnContainers是一个简化版的基于.NET Core和Docker等技术开发的面向微服务架构的参考应用,是一个简化版的在线商城/电子商务应用,其包含基于浏览器的Web应用. ...

  9. constexpr函数------c++ primer

    constexpr函数是指能用于常量表达式的函数.定义constexpr函数的方法有其他函数类似,不过要遵循几项约定:函数的返回值类型及所以形参的类型都是字面值类型,而且函数体中必须有且只有一条ret ...

  10. LoadRunner--获取请求的返回结果函数

    注:内容来自网络 Action(){ web_set_max_html_param_len("262144"); // 默认最大长度为256 web_reg_save_param( ...