https://oj.neu.edu.cn/problem/1460

思路:若n=(p1^a1)*(p2^a2)...(pn^an),则f(n,0)=a1*a2*...*an,显然f(n,0)是积性函数,对于f(x,y)可以看出他是f(x,y-1)与自身进行狄利克雷卷积得到的结果,所以f(x,y)也是积性函数。因此,只要对n质因子分解,然后与预理出次方的dp值即可。注意积性函数的概念中a,b必须互质!

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int mod = 1000000007;
const int maxn = 1000000+5,maxm = 10000+5;
int dp[30][maxm];
vector<int> g[maxn]; inline void solve(int n){
int nn = n;
for(int i=2;i*i<=n;i++){
if(n%i==0){
int num = 0;
while(n%i==0) n/=i,num++;
g[nn].push_back(num);
}
}
if(n>1) g[nn].push_back(1);
} void init(int n=30,int m=maxm){
for(int i=1;i<n;i++) dp[i][0] = i;
for(int i=1;i<n;i++){
for(int j=1;j<m;j++){
if(i==1){
dp[i][j] = dp[i][j-1]*2%mod;
}
else {
dp[i][j] = dp[i][j-1]*2%mod;
for(int k=1;k<i;k++){
dp[i][j] = (dp[i][j] + dp[k][j - 1] * dp[i - k][j - 1] % mod) % mod;
}
}
}
}
} signed main(){
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
init();
int t;
cin>>t;
while(t--){
int n,m;
cin>>n>>m;
if(n==1) cout<<1<<endl;
else{
if(g[n].size()==0) solve(n);
int ans = 1;
for(int i=0;i<g[n].size();i++){
ans = ans*dp[g[n][i]][m]%mod;
}
cout<<ans<<endl;
}
}
return 0;
}

Problem : 这个题如果不是签到题 Asm.Def就女装(积性函数dp的更多相关文章

  1. P6222 「简单题」加强版 莫比乌斯反演 线性筛积性函数

    LINK:简单题 以前写过弱化版的 不过那个实现过于垃圾 少预处理了一个东西. 这里写一个实现比较精细了. 最后可推出式子:\(\sum_{T=1}^nsum(\frac{n}{T})\sum_{x| ...

  2. POJ_2480 Longge's problem【积性函数+欧拉函数的理解与应用】

    题目: Longge is good at mathematics and he likes to think about hard mathematical problems which will ...

  3. POJ 2480 Longge&#39;s problem 积性函数

    题目来源:id=2480" style="color:rgb(106,57,6); text-decoration:none">POJ 2480 Longge's ...

  4. POJ 2480 Longge's problem (积性函数,欧拉函数)

    题意:求∑gcd(i,n),1<=i<=n思路:f(n)=∑gcd(i,n),1<=i<=n可以知道,其实f(n)=sum(p*φ(n/p)),其中p是n的因子.为什么呢?原因 ...

  5. poj 2480 Longge's problem 积性函数

    思路:首先给出几个结论: 1.gcd(a,b)是积性函数: 2.积性函数的和仍然是积性函数: 3.phi(a^b)=a^b-a^(b-1); 记 f(n)=∑gcd(i,n),n=p1^e1*p2^e ...

  6. TopCoder SRM 660 Div2 Problem 1000 Powerit (积性函数)

    令$f(x) = x^{2^{k}-1}$,我们可以在$O(k)$的时间内求出$f(x)$. 如果对$1$到$n$都跑一遍这个求解过程,时间复杂度$O(kn)$,在规定时间内无法通过. 所以需要优化. ...

  7. poj 2480 Longge&#39;s problem 积性函数性质+欧拉函数

    题意: 求f(n)=∑gcd(i, N) 1<=i <=N. 分析: f(n)是积性的数论上有证明(f(n)=sigma{1<=i<=N} gcd(i,N) = sigma{d ...

  8. WEB新手之签到题

    写一写web新手赛的题. 这是签到题,开始时需要耐心等待页面中字母全部出现. 字母全部出现后,会跳转到另一个界面,如上图所示.F12没什么特别的地方,这题应该有点难度. 按往常一样,先抓包. 按英文提 ...

  9. XTU OJ 1207 Welcome to XTCPC (字符串签到题)

    Problem Description Welcome to XTCPC! XTCPC start today, you are going to choose a slogan to celebra ...

随机推荐

  1. RocketMQ中Producer的启动源码分析

    RocketMQ中通过DefaultMQProducer创建Producer DefaultMQProducer定义如下: public class DefaultMQProducer extends ...

  2. 【Android】Mac Android adb 配置

    打开终端,输入下面命令: touch .bash_profile open -e .bash_profile 即新建 “.bash_profile” 文件,并会弹出 “.bash_profile” 文 ...

  3. Mybatis与Spring集成时都做了什么?

    Mybatis是java开发者非常熟悉的ORM框架,Spring集成Mybatis更是我们的日常开发姿势. 本篇主要讲Mybatis与Spring集成所做的事情,让读过本文的开发者对Mybatis和S ...

  4. CMD开放3389端口

    REG ADD HKLM\SYSTEM\CurrentControlSet\Control\Terminal" "Server /v fDenyTSConnections /t R ...

  5. Python 之父再发文:构建一个 PEG 解析器

    花下猫语: Python 之父在 Medium 上开了博客,现在写了两篇文章,本文是第二篇的译文.前一篇的译文 在此 ,宣布了将要用 PEG 解析器来替换当前的 pgen 解析器. 本文主要介绍了构建 ...

  6. 2. 源码分析---SOFARPC客户端服务引用

    我们先上一张客户端服务引用的时序图. 我们首先来看看ComsumerConfig的refer方法吧 public T refer() { if (consumerBootstrap == null) ...

  7. php 获取未来七天的日期和星期

    php获取未来七天的日期和星期代码     for($i=4;$i<8;$i++){       $dateArray[$i]=date('Y-m-d',strtotime(date('Y-m- ...

  8. JWT详解

    目录 1.前言 2.JWT的数据结构 2.1 Header 2.2 Payload 2.3 Signature 2.4 Base64URL 3. JWT的实现   1.前言 定义:JSON Web T ...

  9. python之闭包+装饰器

    闭包 内部函数对外部函数作用域变量的引用. 函数内的属性都是有生命周期的,都是在函数执行期间 闭包内的闭包函数私有化了变量,类似于面向对象 图片解析 示例一 https://www.bilibili. ...

  10. spark源码阅读---Utils.getCallSite

    1 作用 当该方法在spark内部代码中调用时,会返回当前调用spark代码的用户类的名称,以及其所调用的spark方法.所谓用户类,就是我们这些用户使用spark api的类. 2 内部实现 2.1 ...