Problem : 这个题如果不是签到题 Asm.Def就女装(积性函数dp
https://oj.neu.edu.cn/problem/1460
思路:若n=(p1^a1)*(p2^a2)...(pn^an),则f(n,0)=a1*a2*...*an,显然f(n,0)是积性函数,对于f(x,y)可以看出他是f(x,y-1)与自身进行狄利克雷卷积得到的结果,所以f(x,y)也是积性函数。因此,只要对n质因子分解,然后与预理出次方的dp值即可。注意积性函数的概念中a,b必须互质!
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int mod = 1000000007;
const int maxn = 1000000+5,maxm = 10000+5;
int dp[30][maxm];
vector<int> g[maxn]; inline void solve(int n){
int nn = n;
for(int i=2;i*i<=n;i++){
if(n%i==0){
int num = 0;
while(n%i==0) n/=i,num++;
g[nn].push_back(num);
}
}
if(n>1) g[nn].push_back(1);
} void init(int n=30,int m=maxm){
for(int i=1;i<n;i++) dp[i][0] = i;
for(int i=1;i<n;i++){
for(int j=1;j<m;j++){
if(i==1){
dp[i][j] = dp[i][j-1]*2%mod;
}
else {
dp[i][j] = dp[i][j-1]*2%mod;
for(int k=1;k<i;k++){
dp[i][j] = (dp[i][j] + dp[k][j - 1] * dp[i - k][j - 1] % mod) % mod;
}
}
}
}
} signed main(){
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
init();
int t;
cin>>t;
while(t--){
int n,m;
cin>>n>>m;
if(n==1) cout<<1<<endl;
else{
if(g[n].size()==0) solve(n);
int ans = 1;
for(int i=0;i<g[n].size();i++){
ans = ans*dp[g[n][i]][m]%mod;
}
cout<<ans<<endl;
}
}
return 0;
}
Problem : 这个题如果不是签到题 Asm.Def就女装(积性函数dp的更多相关文章
- P6222 「简单题」加强版 莫比乌斯反演 线性筛积性函数
LINK:简单题 以前写过弱化版的 不过那个实现过于垃圾 少预处理了一个东西. 这里写一个实现比较精细了. 最后可推出式子:\(\sum_{T=1}^nsum(\frac{n}{T})\sum_{x| ...
- POJ_2480 Longge's problem【积性函数+欧拉函数的理解与应用】
题目: Longge is good at mathematics and he likes to think about hard mathematical problems which will ...
- POJ 2480 Longge's problem 积性函数
题目来源:id=2480" style="color:rgb(106,57,6); text-decoration:none">POJ 2480 Longge's ...
- POJ 2480 Longge's problem (积性函数,欧拉函数)
题意:求∑gcd(i,n),1<=i<=n思路:f(n)=∑gcd(i,n),1<=i<=n可以知道,其实f(n)=sum(p*φ(n/p)),其中p是n的因子.为什么呢?原因 ...
- poj 2480 Longge's problem 积性函数
思路:首先给出几个结论: 1.gcd(a,b)是积性函数: 2.积性函数的和仍然是积性函数: 3.phi(a^b)=a^b-a^(b-1); 记 f(n)=∑gcd(i,n),n=p1^e1*p2^e ...
- TopCoder SRM 660 Div2 Problem 1000 Powerit (积性函数)
令$f(x) = x^{2^{k}-1}$,我们可以在$O(k)$的时间内求出$f(x)$. 如果对$1$到$n$都跑一遍这个求解过程,时间复杂度$O(kn)$,在规定时间内无法通过. 所以需要优化. ...
- poj 2480 Longge's problem 积性函数性质+欧拉函数
题意: 求f(n)=∑gcd(i, N) 1<=i <=N. 分析: f(n)是积性的数论上有证明(f(n)=sigma{1<=i<=N} gcd(i,N) = sigma{d ...
- WEB新手之签到题
写一写web新手赛的题. 这是签到题,开始时需要耐心等待页面中字母全部出现. 字母全部出现后,会跳转到另一个界面,如上图所示.F12没什么特别的地方,这题应该有点难度. 按往常一样,先抓包. 按英文提 ...
- XTU OJ 1207 Welcome to XTCPC (字符串签到题)
Problem Description Welcome to XTCPC! XTCPC start today, you are going to choose a slogan to celebra ...
随机推荐
- Android Studio 制作简单的App欢迎页面——基于Android 6.0
在许多的Android App中,我们点击进入时,都可以看到一个欢迎页面,大概持续了几秒,然后跳转至主页面.以下是我开发过程中总结出的一些方法和例子. 一.创建一个新的Activity 首先,新建了一 ...
- ubuntu搭建环境
1.终端输入 sudo apt- add-apt-repository ppa:ondrej/php sudo add-apt-repository ppa:ondrej/php sudo apt ...
- 解决:django.db.utils.OperationalError: unable to open database file
这是一个从GitHub上下载的,一个网站项目的源码.想要在自己的电脑上运行,期间过程相当曲折,不过至此终于是完成了. 1.安装过程: python2->virtualenv->django ...
- gradle脚本源码查看环境搭建
背景 我刚入门学习gradle时,网上资料都是说通过gradle的api查看并学习脚本编写,但是api一般只有接口说明,并不能深入了解各个api的实现逻辑,有时就会对一些脚本的写法感到疑惑.通过搭建源 ...
- Linux下,为应用程序添加桌面图标(ubuntu18.4)
一.桌面图标位置 Lniux下桌面图标储存路径为:/usr/share/applications 二.桌面图标格式 所有桌面图标格式均为desktop,即名为XXX.desktop 三.编辑内容(常用 ...
- 【Java例题】2.5 温度转换
5.输入华氏温度, 用下列公式将其转换为摄氏温度并输出. C=5/9(F-32). package study; import java.util.Scanner; public class demo ...
- 原生JavaScript(js)手把手教你写轮播图插件(banner)
---恢复内容开始--- 1.轮播图插件 1.什么是插件: 为已有的程序增加功能 2.插件的特点(为什么要做成一个插件)与注意事项: 1.通用性,可移植性强 2.兼容性:不会对其他代码产生影响 3.创 ...
- 6个美观的纯CSS渐变背景代码分享(亲测有效)
样式1 background-image: linear-gradient(160deg, #b100ff 20%,#00b3ff 80%); 样式2 background-image: linear ...
- ES6中比较实用的几个特性
1.Default Parameters(默认参数) in ES6 es6之前,定义默认参数的方法是在一个方法内部定义 var link = function (height, color, url) ...
- HTTP与HTTPS之面试必备
本文主要讲解Http与https的区别,以及https是怎样加密来保证安全的. 首先讲这俩个协议的简单区别: HTTP:超文本传输协议. HTTPS:安全套接字层超文本传输协议HTTP+SSL HTT ...