题目背景

BBB 地区在地震过后,所有村庄都造成了一定的损毁,而这场地震却没对公路造成什么影响。但是在村庄重建好之前,所有与未重建完成的村庄的公路均无法通车。换句话说,只有连接着两个重建完成的村庄的公路才能通车,只能到达重建完成的村庄。

题目描述

给出 BBB 地区的村庄数 NNN ,村庄编号从 000 到 N−1N-1N−1 ,和所有 MMM 条公路的长度,公路是双向的。并给出第 iii 个村庄重建完成的时间 tit_iti​ ,你可以认为是同时开始重建并在第 tit_iti​ 天重建完成,并且在当天即可通车。若 tit_iti​ 为 000 则说明地震未对此地区造成损坏,一开始就可以通车。之后有 QQQ 个询问 (x,y,t)(x, y, t)(x,y,t) ,对于每个询问你要回答在第 ttt 天,从村庄 xxx 到村庄y的最短路径长度为多少。如果无法找到从 xxx 村庄到 yyy 村庄的路径,经过若干个已重建完成的村庄,或者村庄 xxx 或村庄 yyy 在第t天仍未重建完成 ,则需要返回 −1-1−1 。

输入输出格式

输入格式:

第一行包含两个正整数 N,MN,MN,M ,表示了村庄的数目与公路的数量。

第二行包含 NNN 个非负整数 t0,t1,…,tN−1t_0, t_1,…, t_{N-1}t0​,t1​,…,tN−1​ ,表示了每个村庄重建完成的时间,数据保证了 t0≤t1≤…≤tN−1t_0 ≤ t_1 ≤ … ≤ t_{N-1}t0​≤t1​≤…≤tN−1​ 。

接下来 MMM 行,每行 333 个非负整数 i,j,wi, j, wi,j,w , www 为不超过 100001000010000 的正整数,表示了有一条连接村庄 iii 与村庄 jjj 的道路,长度为 www ,保证 i≠ji≠ji≠j ,且对于任意一对村庄只会存在一条道路。

接下来一行也就是 M+3M+3M+3 行包含一个正整数 QQQ ,表示 QQQ 个询问。

接下来 QQQ 行,每行 333 个非负整数 x,y,tx, y, tx,y,t ,询问在第 ttt 天,从村庄 xxx 到村庄 yyy 的最短路径长度为多少,数据保证了 ttt 是不下降的。

输出格式:

共 QQQ 行,对每一个询问 (x,y,t)(x, y, t)(x,y,t) 输出对应的答案,即在第 ttt 天,从村庄 xxx 到村庄 yyy 的最短路径长度为多少。如果在第t天无法找到从 xxx 村庄到 yyy 村庄的路径,经过若干个已重建完成的村庄,或者村庄x或村庄 yyy 在第 ttt 天仍未修复完成,则输出 −1-1−1 。

输入输出样例

输入样例#1:

4 5
1 2 3 4
0 2 1
2 3 1
3 1 2
2 1 4
0 3 5
4
2 0 2
0 1 2
0 1 3
0 1 4
输出样例#1:

-1
-1
5
4

说明

对于 30%30\%30% 的数据,有 N≤50N≤50N≤50 ;

对于 30%30\%30% 的数据,有 ti=0t_i= 0ti​=0 ,其中有 20%20\%20% 的数据有 ti=0t_i = 0ti​=0 且 N>50N>50N>50 ;

对于 50%50\%50% 的数据,有 Q≤100Q≤100Q≤100 ;

对于 100%100\%100% 的数据,有 N≤200N≤200N≤200 , M≤N×(N−1)/2M≤N \times (N-1)/2M≤N×(N−1)/2 , Q≤50000Q≤50000Q≤50000 ,所有输入数据涉及整数均不超过 100000100000100000 。


看到这题数据范围就不停地想O(QN)的算法,但是没想到。

想到了另一种暴力的方法,就是我们对于每一个询问(x, y, t),都把t之前没有恢复的村庄恢复,然后跑Floyd暴力更新。

想都没想就是O(QN^2)...

想不到别的做法,弃疗了写一发暴力...woc?A了?

然后才认真的分析了一下复杂度,我们发现不管Q有多少,我们最多只会并且必须拓展n个节点,对于每个中转节点,都跑一遍枚举两个端点Floyd,所以是O(N^3)的...

看来以后要认真分析复杂度,否则想出正解都以为是错的...


#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
inline int read(){
int res=;char ch=getchar();
while(!isdigit(ch))ch=getchar();
while(isdigit(ch)){res=(res<<)+(res<<)+(ch^);ch=getchar();}
return res;
}
int n, m, Q;
int t[], top;
int dis[][]; int main()
{
n = read(), m = read();
for (int i = ; i <= n ; i ++) t[i] = read();
top = ;
memset(dis, 0x3f, sizeof dis);
for (int i = ; i <= m ; i ++)
{
int x = read() + , y = read() + , z = read();
dis[x][y] = dis[y][x] = z;
}
Q = read();
while(Q--)
{
int x = read() + , y = read() + , z = read();
bool fl = ;
if (t[x] > z or t[y] > z) fl = ;
while(t[top] <= z and top <= n)
{
for (register int i = ; i <= n ; i ++)
if (i != top)
for (register int j = ; j <= n ; j ++)
if (j != top and j != i)
dis[i][j] = min(dis[i][j], dis[i][top] + dis[top][j]);
top++;
}
if (dis[x][y] == 0x3f3f3f3f or fl) printf("-1\n");
else printf("%d\n", dis[x][y]);
}
return ;
}

Luogu1119灾后重建的更多相关文章

  1. CODEVS 1817 灾后重建 Label:Floyd || 最短瓶颈路

    描述 灾后重建(rebuild)  B地区在地震过后,所有村庄都造成了一定的损毁,而这场地震却没对公路造成什么影响.但是在村庄重建好之前,所有与未重建完成的村庄的公路均无法通车.换句话说,只有连接着两 ...

  2. AC日记——灾后重建 洛谷 P1119

    灾后重建 思路: 看到n<=200,思考弗洛伊德算法: 如何floyed呢? floyed是一种动态规划求最短路的算法: 它通过枚举中间点来更新两点之间最短路: 回到这个题本身: 所有点的重建完 ...

  3. 洛谷——P1119 灾后重建

    P1119 灾后重建 题目背景 B地区在地震过后,所有村庄都造成了一定的损毁,而这场地震却没对公路造成什么影响.但是在村庄重建好之前,所有与未重建完成的村庄的公路均无法通车.换句话说,只有连接着两个重 ...

  4. 【洛谷P1119题解】灾后重建——(floyd)

    这道题告诉我,背的掉板子并不能解决一切问题,理解思想才是关键,比如不看题解,我确实想不清楚这题是弗洛伊德求最短路 (我不该自不量力的说我会弗洛伊德了我错了做人果然要谦虚) 灾后重建 题目背景 B地区在 ...

  5. 洛谷 P1119 灾后重建 最短路+Floyd算法

    目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例 输出样例 说明 思路 AC代码 总结 题面 题目链接 P1119 灾后重建 题目描述 B地区在地震过后,所有村 ...

  6. java实现第六届蓝桥杯灾后重建

    灾后重建 题目描述 Pear市一共有N(<=50000)个居民点,居民点之间有M(<=200000)条双向道路相连.这些居民点两两之间都可以通过双向道路到达.这种情况一直持续到最近,一次严 ...

  7. [Luogu P1119] 灾后重建 (floyd)

    题面 传送门:https://www.luogu.org/problemnew/show/P1119 Solution 这题的思想很巧妙. 首先,我们可以考虑一下最暴力的做法,对每个时刻的所有点都求一 ...

  8. 【u110】灾后重建

    Time Limit: 1 second Memory Limit: 128 MB [问题描述] B地区在地震过后,所有村庄都造成了一定的损毁,而这场地震却没对公路造成什么影响.但是在村庄重建好之前, ...

  9. 洛谷P1119 灾后重建[Floyd]

    题目背景 B地区在地震过后,所有村庄都造成了一定的损毁,而这场地震却没对公路造成什么影响.但是在村庄重建好之前,所有与未重建完成的村庄的公路均无法通车.换句话说,只有连接着两个重建完成的村庄的公路才能 ...

随机推荐

  1. Tomcat类加载器体系结构

    <深入理解java虚拟机>——Tomcat类加载器体系结构 标签: java / 虚拟机 / tomcat Tomcat 等主流Web服务器为了实现下面的基本功能,都实现了不止一个自定义的 ...

  2. Linux 笔记 - 第九章 Linux 中软件的安装

    博客地址:http://www.moonxy.com 一.前言 在 Linux 系统中,应用程序的软件包主要分为两种:1)第一种是二进制的可执行软件包,也就是解开包后就可以直接运行.在 Windows ...

  3. Flink 从 0 到 1 学习 —— 如何自定义 Data Sink ?

    前言 前篇文章 <从0到1学习Flink>-- Data Sink 介绍 介绍了 Flink Data Sink,也介绍了 Flink 自带的 Sink,那么如何自定义自己的 Sink 呢 ...

  4. ORA-08102异常重现及恢复

    现象: 在表上面新建主键报ORA-08102的异常: SQL> alter table t add primary key(id); alter table t add primary key( ...

  5. JavaScript之深入函数(一)

    在任何编程语言中,函数的功能都是十分强大的,JavaScript也不例外.之前已经讲解了函数的一些基本知识,诸如函数定义,函数执行和函数返回值等,今天就带大家深入了解JavaScript中函数的原理及 ...

  6. java 数组定义

    1.方式一: 数组声明: int[] intArr ; String [] strArr; int [][] intArrs; 数组初始化: intArr = new int[6]; //一维数组 s ...

  7. Android Studio [ImageView/使用第三方库加载图片]

    ImageViewActivity.class package com.xdw.a122; import android.support.v7.app.AppCompatActivity; impor ...

  8. SpringBootSecurity学习(03)网页版登录添加自定义登录页面

    自定义登录页面 前面无论是使用默认配置,还是自定义配置类,都是使用的springboot-security自带的登录页面,自带的登录页面在这个版本虽然设计的非常不错,但是在实际开发中,我们通常还是使用 ...

  9. Flask基础(03)-->创建第一个Flask程序

    # 导入Flask from flask import Flask # 创建Flask的应用程序 # 参数__name__指的是Flask所对应的模块,其决定静态文件从哪个地方开始寻找 app = F ...

  10. Angular7 HttpClient处理多个请求

    1. MergeMap - 串联请求 后一个请求需要前一个请求的返回结果时,需要使用串联请求. 可以使用MergeMap实现, 优势是减少嵌套,优化代码: 代码如下: import {HttpClie ...