2018 Multi-University Training Contest 2(部分题解)
Game
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1770 Accepted Submission(s): 1089
Problem Description
Alice and Bob are playing a game.
The game is played on a set of positive integers from 1 to n.
In one step, the player can choose a positive integer from the set, and erase all of its divisors from the set. If a divisor doesn't exist it will be ignored.
Alice and Bob choose in turn, the one who cannot choose (current set is empty) loses.
Alice goes first, she wanna know whether she can win. Please judge by outputing 'Yes' or 'No'.
Input
There might be multiple test cases, no more than 10. You need to read till the end of input.
For each test case, a line containing an integer n. (1≤n≤500)
Output
A line for each test case, 'Yes' or 'No'.
Sample Input
1
Sample Output
Yes
题意:A和B在一串数字上操作,数字范围为1-n, 每次只能取一个数及其它的所有因子,那个先不能操作,那个先输;
题解:如果存在B胜的状态,那么A也能到达,所以本题对于A来说只有必胜态。
#include<bits/stdc++.h>
#define ios1 ios::sync_with_stdio(0)
#define ios2 cin.tie(0)
#define LL long long
#define INF 0x3f3f3f3f
using namespace std;
int main() {
int n;
while(scanf("%d", &n) == 1) {
printf("Yes\n");
}
return 0;
}
Naive Operations
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 502768/502768 K (Java/Others)
Total Submission(s): 1899 Accepted Submission(s): 258
Problem Description
In a galaxy far, far away, there are two integer sequence a and b of length n.
b is a static permutation of 1 to n. Initially a is filled with zeroes.
There are two kind of operations:
1. add l r: add one for al,al+1...ar
2. query l r: query ∑ri=l⌊ai/bi⌋
Input
There are multiple test cases, please read till the end of input file.
For each test case, in the first line, two integers n,q, representing the length of a,b and the number of queries.
In the second line, n integers separated by spaces, representing permutation b.
In the following q lines, each line is either in the form 'add l r' or 'query l r', representing an operation.
1≤n,q≤100000, 1≤l≤r≤n, there're no more than 5 test cases.
Output
Output the answer for each 'query', each one line.
Sample Input
5 12
1 5 2 4 3
add 1 4
query 1 4
add 2 5
query 2 5
add 3 5
query 1 5
add 2 4
query 1 4
add 2 5
query 2 5
add 2 2
query 1 5
Sample Output
1
1
2
4
4
6
题意:n个数,2种操作,2个数组,a数组初始都为0,然后给了b数组的值,
add 是给l到r都加1,query是查询l到r的
∑ri=⌊ai/bi⌋的和.
思路:我们只需维护b数组的区间最小值就可以了,由于这个是向下取整,因此只有当bi减为0的时候才会对所求的区间有贡献值,所以对a数组的加1的操作,相当于对b数组的减1的操作.
如果区间的最小值min>1,那么min--,否则向下查找; min>1的子区间继续之前的操作,min==1的让贡献值加1,所属的值变为本来的值
/**
add a b c:把区间[a,b]内的所有数都增加 c
sum a b:查询区间[a,b]的区间和
min a b:查询区间[a,b]的最小值
*/
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 10;
const long long INF = 1LL << 62;
struct Segment_tree {
struct Node {
int l, r;///左右区间
int sum, min, add_lazy;///贡献值, 区间最小值, 标记
} tre[maxn << 2];
int arr[maxn];
inline void push_up(int rt) {
if(tre[rt].l == tre[rt].r) {
return ;
}
tre[rt].sum = tre[rt<<1].sum + tre[rt<<1|1].sum;
tre[rt].min = min(tre[rt<<1].min, tre[rt<<1|1].min);
}
inline void push_down(int rt) {
if(tre[rt].add_lazy) {
tre[rt<<1].add_lazy += tre[rt].add_lazy;
tre[rt<<1].min -= tre[rt].add_lazy;
tre[rt<<1|1].add_lazy += tre[rt].add_lazy;
tre[rt<<1|1].min -= tre[rt].add_lazy;
tre[rt].add_lazy = 0;
}
}
void build(int rt,int l,int r) {
tre[rt].l = l;
tre[rt].r = r;
tre[rt].add_lazy = 0;
if(l == r) {
tre[rt].sum = 0;
tre[rt].min = arr[l];
return ;
}
int mid = (l + r) >> 1;
build(rt<<1,l,mid);
build(rt<<1|1,mid+1,r);
push_up(rt);
}
void update1(int rt,int l,int r) { ///add
push_down(rt);
if(l == tre[rt].l && tre[rt].r == r && tre[rt].min > 1) {
tre[rt].add_lazy += 1;
tre[rt].min -= 1;
return ;
}
if(tre[rt].l == tre[rt].r) {
tre[rt].add_lazy += 1;
tre[rt].min -= 1;
if(tre[rt].min <= 0) {
tre[rt].min = arr[l];
tre[rt].sum += 1;
}
return ;
}
int mid = (tre[rt].l + tre[rt].r) >> 1;
if(r <= mid) {
update1(rt<<1,l,r);
} else if(l > mid) {
update1(rt<<1|1,l,r);
} else {
update1(rt<<1,l,mid);
update1(rt<<1|1,mid+1,r);
}
push_up(rt);
}
int query1(int rt,int l,int r) { ///sum
push_down(rt);
if(l == tre[rt].l && tre[rt].r == r) {
return tre[rt].sum;
}
int mid = (tre[rt].l + tre[rt].r) >> 1;
if(r <= mid) {
return query1(rt<<1,l,r);
} else if(l > mid) {
return query1(rt<<1|1,l,r);
} else {
return query1(rt<<1,l,mid) + query1(rt<<1|1,mid+1,r);
}
}
} S;
int main() {
int n, q;
while(cin >> n >> q) {
for(int i = 1; i <= n; i++) {
scanf("%d", &S.arr[i]);
}
S.build(1, 1, n);
string s;
int l, r;
while(q--) {
cin >> s >> l >> r;
if(s == "add") {
S.update1(1, l, r);
}
else {
cout << S.query1(1, l, r) << endl;
}
}
}
return 0;
}
2018 Multi-University Training Contest 2(部分题解)的更多相关文章
- 2018 Multi-University Training Contest 3(部分题解)
Problem F. Grab The Tree Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 524288/524288 K (Ja ...
- 2018 Multi-University Training Contest 1(部分题解)
Maximum Multiple Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- 2018 Multi-University Training Contest - Team 1 题解
Solved A HDU 6298 Maximum Multiple Solved B HDU 6299 Balanced Sequence Solved C HDU 6300 Triangle Pa ...
- 2018 Nowcoder Multi-University Training Contest 2
目录 Contest Info Solutions A. run D. monrey G. transform H. travel I. car J. farm Contest Info Practi ...
- 2016 Multi-University Training Contest 3 部分题解
1001,只要枚举区间即可.签到题,要注意的是输入0的话也是“TAT”.不过今天补题的时候却WA了好几次,觉得奇怪.原来出现在判断条件那里,x是一个int64类型的变量,在进行(x<65536* ...
- 2016 Multi-University Training Contest 1 部分题解
第一场多校,出了一题,,没有挂零还算欣慰. 1001,求最小生成树和,确定了最小生成树后任意两点间的距离的最小数学期望.当时就有点矛盾,为什么是求最小的数学期望以及为什么题目给了每条边都不相等的条件. ...
- 2016 Multi-University Training Contest 4 部分题解
1001,官方题解是直接dp,首先dp[i]表示到i位置的种类数,它首先应该等于dp[i-1],(假设m是B串的长度)同时,如果(i-m+1)这个位置开始到i这个位置的这一串是和B串相同的,那么dp[ ...
- 2018 Nowcoder Multi-University Training Contest 1
Practice Link J. Different Integers 题意: 给出\(n\)个数,每次询问\((l_i, r_i)\),表示\(a_1, \cdots, a_i, a_j, \cdo ...
- 2018 Nowcoder Multi-University Training Contest 5
Practice Link A. gpa 题意: 有\(n\)门课程,每门课程的学分为\(s_i\),绩点为\(c_i\),要求最多删除\(k\)门课程,使得gpa最高. gpa计算方式如下: \[ ...
随机推荐
- [Chat]实战:仿网易云课堂微信小程序开发核心技术剖析和经验分享
本Chat以一个我参与开发并已上线运营近2年——类似网易云课堂的微信小程序项目,来进行微信小程序高级开发的学习. 本场Chat围绕项目开发核心技术分析,帮助你快速掌握在线视频.音频类小程序开发所需要的 ...
- 定制开发kubernetes流程
kubernetes集群三步安装 概述 本文介绍如何对kubernetes进行二次开发,仓库如何管理,git分支如何管理,怎样利用CI去编译与发布以及如何给社区贡献代码等,结合实际例子,望对大家有所帮 ...
- SpringBoot入门及YML文件详解
SpringBoot 简介 微框架,与 Spring4 一起诞生,基于约定.生来为了简化 spring 的配置 优点 可以快速的上手,整合了一些子项目(开源框架或者第三方开源库) 可以依赖很少的配置快 ...
- Oauth2认证模式之授权码模式实现
Oauth2认证模式之授权码模式(authorization code) 本示例实现了Oauth2之授权码模式,授权码模式(authorization code)是功能最完整.流程最严密的授权模式.它 ...
- go 学习笔记之有意思的变量和不安分的常量
首先希望学习 Go 语言的爱好者至少拥有其他语言的编程经验,如果是完全零基础的小白用户,本教程可能并不适合阅读或尝试阅读看看,系列笔记的目标是站在其他语言的角度学习新的语言,理解 Go 语言,进而写出 ...
- 程序员修神之路--用NOSql给高并发系统加速(送书)
随着互联网大潮的到来,越来越多网站,应用系统需要海量数据的支撑,高并发.低延迟.高可用.高扩展等要求在传统的关系型数据库中已经得不到满足,或者说关系型数据库应对这些需求已经显得力不从心了.关系型数据库 ...
- 下拉框spinner
repositories { flatDir { dirs 'libs' //就是你放aar的目录地址 maven { url "https://jitpack.io" } }}d ...
- Zookeeper_阅读源码第一步_在 IDE 里启动 zkServer(单机版)
Zookeeper是开源的,如果想多了解Zookeeper或看它的源码,最好是能找到它的源码并在 IDE 里启动,可以debug看它咋执行的,能够帮助你理解其原理. 准备源码 所以我们很容易搞到它的源 ...
- 【POJ - 2387】Til the Cows Come Home(最短路径 Dijkstra算法)
Til the Cows Come Home 大奶牛很热爱加班,他和朋友在凌晨一点吃完海底捞后又一个人回公司加班,为了多加班他希望可以找最短的距离回到公司.深圳市里有N个(2 <= N < ...
- poj 1286 polya定理
Necklace of Beads Description Beads of red, blue or green colors are connected together into a circu ...