题目链接:http://arc077.contest.atcoder.jp/tasks/arc077_b

题解:有n+1个数只有一个数字是有重复出现的,要求一共有多少不同的组合显然和这两个数的位置有关系,具体看一下代码就能理解了

就是组合数学看一下代码就好理解了,这题比较简单不多加解释。

#include <iostream>
#include <cstring>
#include <cmath>
#include <cstdio>
#define mod 1000000007
using namespace std;
const int M = 1e5 + 10;
typedef long long ll;
int a[M];
bool vis[M];
ll up[M] , down[M] , up2[M] , down2[M];
ll inv(ll a) {
return a == 1 ? 1 : (ll)(mod - mod / a) * inv(mod % a) % mod;
}
int main() {
int n;
scanf("%d" , &n);
for(int i = 1 ; i <= n + 1 ; i++) scanf("%d" , &a[i]);
memset(vis , 0 , sizeof(vis));
int pos1 = 0 , pos2 = 0 , gg;
for(int i = 1 ; i <= n + 1 ; i++) {
if(!vis[a[i]]) {
vis[a[i]] = true;
continue;
}
else {
pos2 = i;
gg = a[i];
break;
}
}
for(int i = 1 ; i <= n + 1 ; i++) {
if(a[i] == gg) {
pos1 = i;
break;
}
}
int num = n - pos2 + 1;
int num2 = pos1 - 1;
num += num2;
up[0] = 1 , down[0] = 1 , up2[0] = 1 , down2[0] = 1;
n++;
for(int i = 1 ; i <= n / 2 ; i++) up[i] = up[i - 1] * (n - i + 1) % mod , down[i] = down[i - 1] * i % mod;
for(int i = n / 2 + 1 ; i <= n ; i++) up[i] = up[n - i] , down[i] = down[n - i];
for(int i = 1 ; i <= num / 2 ; i++) up2[i] = up2[i - 1] * (num - i + 1) % mod , down2[i] = down2[i - 1] * i % mod;
for(int i = num / 2 + 1 ; i <= num ; i++) up2[i] = up2[num - i] , down2[i] = down2[num - i];
for(int i = 1 ; i <= n ; i++) {
ll sum = 0;
if(i == 1) {
printf("%lld\n" , (ll)(n - 1));
}
else {
sum += up[i] * inv(down[i]) % mod;
if(num >= i - 1 && num > 0) sum -= up2[i - 1] * inv(down2[i - 1]) % mod;
printf("%lld\n" , (sum + mod) % mod);
}
}
return 0;
}

atcoder D - 11(组合数学)的更多相关文章

  1. 【AtCoder】【组合数学】【模型转换】Colorful Balls(AGC012)

    题意: 有n个球,每个球有两个值,一个是颜色,另一个是重量.可以进行如下的操作任意次: 1.选择两个颜色相同的球,如果这两个球的重量之和小于等于X,就交换这两个球: 2.选择两个颜色不同的球,如果这两 ...

  2. Atcoder grand 025 组合数学塔涂色 贪心走路博弈

    A 略 B 题意:给你N个数(3e5) 每个数可以是0,a,b,a+b(3e5) 但是总数加起来要是定值K(18e10) 问总方法数mod 998244353 解: 把a+b的看成是一个a加上一个b的 ...

  3. 地区sql

    /*Navicat MySQL Data Transfer Source Server : localhostSource Server Version : 50136Source Host : lo ...

  4. AtCoder Regular Contest 077 D - 11

    题目链接:http://arc077.contest.atcoder.jp/tasks/arc077_b Time limit : 2sec / Memory limit : 256MB Score ...

  5. 2018.11.07 bzoj2751: [HAOI2012]容易题(easy)(组合数学)

    传送门 组合数学一眼题. 感觉一直做这种题智商会降低. 利用组合数学的分步计数原理. 只用关心每个数不被限制的取值的总和然后乘起来就可以了. 对于大部分数都不会被限制,总和都是n(n+1)2\frac ...

  6. 2018.09.19 atcoder Card Game for Three(组合数学)

    传送门 简单组合数学想优化想了半天啊233. 我们只需考虑翻开n张A,b张B,c张C且最后一张为A的选法数. 显然还剩下m+k−b−cm+k-b-cm+k−b−c张牌没有选. 这样的话无论前n+b+c ...

  7. Atcoder&CodeForces杂题11.7

    Preface 又自己开了场CF/Atcoder杂题,比昨天的稍难,题目也更有趣了 昨晚炉石检验血统果然是非洲人... 希望这是给NOIP2018续点rp吧 A.CF1068C-Colored Roo ...

  8. Atcoder Regular Contest 061 D - Card Game for Three(组合数学)

    洛谷题面传送门 & Atcoder 题面传送门 首先考虑合法的排列长什么样,我们考虑将每次操作者的编号记录下来形成一个序列(第一次 A 操作不计入序列),那么显然这个序列中必须恰好含有 \(n ...

  9. Atcoder Regular Contest 093 D - Dark Horse(组合数学+状压 dp)

    Atcoder 题面传送门 & 洛谷题面传送门 常规题,简单写写罢((( 首先 \(1\) 的位置是什么不重要,我们不妨钦定 \(1\) 号选手最初就处在 \(1\) 号位置,最后答案乘个 \ ...

随机推荐

  1. linux下mysql无法看到3306端口监听

    这个问题搞定了,原因是我的my.cnf有话:skip-network注释掉,然后运行netstat -an|grep 3306 就可以看到了

  2. [Pulsar系列] 10分钟学会Pulsar消息系统概念

    Apache Pulsar Pulsar是一个支持多租户的.高性能的服务与服务之间消息通讯的解决方案,最初由雅虎开发,现在由Apache软件基金会管理. Pulsar的主要特性如下: Pulsar实例 ...

  3. Linux下Docker以及portainer相关配置

    一.安装使用Docer CE 本文以CentOS 7为例,安装docker CE版本,docker有两种版本,社区版本CE和企业版本EE,此处学习研究以CE版本为例, 两种安装方式可选:1.使用yum ...

  4. spark shuffle读操作

    提出问题 1. shuffle过程的数据是如何传输过来的,是按文件来传输,还是只传输该reduce对应在文件中的那部分数据? 2. shuffle读过程是否有溢出操作?是如何处理的? 3. shuff ...

  5. Go基础语法学习

    Go语言基础 Go是一门类似C的编译型语言,但是它的编译速度非常快.这门语言的关键字总共也就二十五个,比英文字母还少一个,这对于我们的学习来说就简单了很多.先让我们看一眼这些关键字都长什么样: 下面列 ...

  6. API开发之接口安全(三)----sign有效时间

    之前生成的sign和校验sign我们已经完全掌握了.但是仅仅凭借这样的sign是无法满足我们的需求的,如果一个黑客通过抓包抓到你的数据 他可以去修改你的header为这样的 body为那样的 也是可以 ...

  7. (二十四)c#Winform自定义控件-单标题窗体

    前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. 开源地址:https://gitee.com/kwwwvagaa/net_winform_custom_control ...

  8. 深入研究BufferedInputStream内幕

    目录 1 概述 2 BufferedInputStream源码分析 3 BufferedInputStream在实际场景中,没有太多用处 4 BufferedInputStream唯一使用场景 1 概 ...

  9. JMeter的JavaRequest探究

    1.背景 最近笔者的一位老朋友咨询了一个问题:在自定义的Java请求中如何编写多个请求?老朋友反应他们发送请求只能基于这种Java请求形式(代码调需用三方封装的jar包).这个问题恰巧不久前在笔者所在 ...

  10. DNS解析综合学习案例

    DNS解析综合学习案例 #图右侧为做题前环境配置 #命令为红色 #命令加载内容为绿色 #vi编辑内容为蓝色 1.用户需把/dev/myvg/mylv逻辑卷以支持磁盘配额的方式挂载到网页目录下 [roo ...