链接:https://www.nowcoder.com/acm/contest/136/I
来源:牛客网

题目描述

P市有n个公交站,之间连接着m条道路。P市计划新开设一条公交线路,该线路从城市的东站(s点)修建到西站(t点),请为P市设计一条满足上述条件并且最短的公交线路图。

输入描述:

第一行有5个正整数n,m,s,t。

接下来m行,每行3个数a,b,v描述一条无向道路a——b,长度为v。

输出描述:

如果有解,输出一行,表示满足条件的最短公交线路的长度c。

否则,输出“-1”

输入例子:
3 3 1 2
1 2 3
2 3 4
1 3 5
输出例子:
3

-->

示例1

输入

复制

3 3 1 2
1 2 3
2 3 4
1 3 5

输出

复制

3
示例2

输入

复制

3 3 1 2
1 2 5
2 3 3
1 3 1

输出

复制

4
示例3

输入

复制

3 1 1 1
1 2 1

输出

复制

0

备注:

对于100%的测试数据:
1 ≤ s,t ≤ n ≤ 1000
1 ≤ m ≤ 10000
1 ≤ 道路的长度 ≤ 10000 分析:一个裸的最短路模板题
搞不懂搞不懂,比赛的时候为什么没有人过这个题?
这套题目后面的题都好做,卡在前面真的难受
这榜真的好歪
AC代码:
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<bits/stdc++.h>
#define maxn 1010
using namespace std;
vector<pair<int,int> >E[maxn];
int n,m;
int d[maxn];
void init()
{
for(int i=0;i<maxn;i++)
E[i].clear();
for(int i=0;i<maxn;i++)
d[i]=1e9;
}
int main()
{
while(cin >> n>> m)
{
int s,t;
scanf("%d%d",&s,&t);
init();
for(int i=0;i<m;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
E[x].push_back(make_pair(y,z));
E[y].push_back(make_pair(x,z));
}
priority_queue<pair<int,int> >Q;
d[s]=0;
Q.push(make_pair(-d[s],s));//使得返回最小值,本来是返回最大值
while(!Q.empty())
{
int now = Q.top().second;
Q.pop();
for(int i=0;i<E[now].size();i++)
{
int v = E[now][i].first;
if(d[v]>d[now]+E[now][i].second)
{
d[v]=d[now]+E[now][i].second;
Q.push(make_pair(-d[v],v));
}
}
}
if(d[t]==1e9)
printf("-1\n");
else printf("%d\n",d[t]);
}
return 0;
}

  

牛客小白月赛6 I 公交线路 最短路 模板题的更多相关文章

  1. 牛客小白月赛13 小A的最短路(lca+RMQ)

    链接:https://ac.nowcoder.com/acm/contest/549/F来源:牛客网 题目描述 小A这次来到一个景区去旅游,景区里面有N个景点,景点之间有N-1条路径.小A从当前的一个 ...

  2. 牛客小白月赛5 E 面积 计算三角形面积模板 波尔约-格维也纳定理 匹克公式

    链接:https://www.nowcoder.com/acm/contest/135/E来源:牛客网 题目描述 定义“最大生成图”:在M*N的点阵中,连接一些点形成一条经过所有点恰好一次的回路,且连 ...

  3. 树的最长链-POJ 1985 树的直径(最长链)+牛客小白月赛6-桃花

    求树直径的方法在此转载一下大佬们的分析: 可以随便选择一个点开始进行bfs或者dfs,从而找到离该点最远的那个点(可以证明,离树上任意一点最远的点一定是树的某条直径的两端点之一:树的直径:树上的最长简 ...

  4. 牛客网 牛客小白月赛5 I.区间 (interval)-线段树 or 差分数组?

    牛客小白月赛5 I.区间 (interval) 休闲的时候写的,但是写的心情有点挫,都是完全版线段树,我的一个队友直接就水过去了,为啥我的就超内存呢??? 试了一晚上,找出来了,多初始化了add标记数 ...

  5. 牛客小白月赛8 - E - 诡异数字 数位DP

    牛客小白月赛8 - E - 诡异数字 题意: 求区间中,满足限制条件的数字的个数. 限制条件就是某些数字不能连续出现几次. 思路: 比较裸的数位DP, DP数组开一个dp[len][x][cnt] 表 ...

  6. 牛客小白月赛18 Forsaken给学生分组

    牛客小白月赛18 Forsaken给学生分组 Forsaken给学生分组 链接:https://ac.nowcoder.com/acm/contest/1221/C来源:牛客网 ​ Forsaken有 ...

  7. 牛客小白月赛18 Forsaken喜欢数论

    牛客小白月赛18 Forsaken喜欢数论 题目传送门直接点标题 ​ Forsaken有一个有趣的数论函数.对于任意一个数xxx,f(x)f(x)f(x)会返回xxx的最小质因子.如果这个数没有最小质 ...

  8. 牛客小白月赛19 E 「火」烈火燎原 (思维,树)

    牛客小白月赛19 E 「火」烈火燎原 (思维,树) 链接:https://ac.nowcoder.com/acm/contest/2272/E来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空 ...

  9. 【牛客小白月赛21】NC201604 Audio

    [牛客小白月赛21]NC201604 Audio 题目链接 题目大意: 给出三点 ,求到三点距离相等的点 的坐标. 解析 考点:计算几何基础. 初中蒟蒻表示不会什么法向量.高斯消元..qwq 方法一: ...

随机推荐

  1. RGB颜色 三者都是0为黑色而255是白色 解释

    问题: RGB颜色 都是0为黑色而255是白色 与日常生活的黑色白色差距怎么那么大,(与物理学中的黑色吸收光是否相悖)而且为什么要这样定义呢? 链接:https://www.zhihu.com/que ...

  2. DesignPattern系列__02接口隔离原则

    介绍 客户端不应该依赖它不需要的接口,即一个类对另一个类的依赖应该建立在最小接口上. Demo引入 先来看一张图: interface MyInterface { void operation1(); ...

  3. abp(net core)+easyui+efcore实现仓储管理系统——使用 WEBAPI实现CURD (十二)

    abp(net core)+easyui+efcore实现仓储管理系统目录 abp(net core)+easyui+efcore实现仓储管理系统——ABP总体介绍(一) abp(net core)+ ...

  4. MySQL-5.7.21非图形化下载、安装、连接问题记录

    1.安装包下载链接:https://cdn.mysql.com//Downloads/MySQL-5.7/mysql-5.7.21-winx64.zip 官网:https://www.mysql.co ...

  5. 夯实Java基础(四)——面向对象之多态

    1.多态介绍 面向对象三大特征:封装.继承.多态.多态是Java面向对象最核心,最难以理解的内容.从一定角度来看,封装和继承几乎都是为多态而准备的. 多态就是指程序中定义的引用变量所指向的具体类型和通 ...

  6. Java学习多线程第二天

    内容介绍 线程安全 线程同步 死锁 Lock锁 等待唤醒机制 1    多线程 1.1     线程安全 如果有多个线程在同时运行,而这些线程可能会同时运行这段代码.程序每次运行结果和单线程运行的结果 ...

  7. Paxos算法原理

    1.从ACID到CAP 我们知道传统集中式系统中实现ACID是很简单的,在分布式环境中,涉及到不同的节点,节点内的ACID可以控制,那么节点间的ACID如何控制呢?构建一个可用性和一致性的分布系统成为 ...

  8. Vue系列:Vue Router 路由梳理

    Vue Router 是 Vue.js 官方的路由管理器.它和 Vue.js 的核心深度集成,让构建单页面应用变得易如反掌.包含的功能有: 嵌套的路由/视图表 模块化的.基于组件的路由配置 路由参数. ...

  9. CodeForces 29D Ant on the Tree

    洛谷题目页面传送门 & CodeForces题目页面传送门 题意见洛谷里的翻译. 这题有\(\bm3\)种解法,但只有一种是正解(这不是废话嘛). 方法\(\bm1\):最近公共祖先LCA(正 ...

  10. iOS项目之多Targets和多环境配置

    项目中使用的同一套代码,但需要开发多个app,app中内容基本上相同,只有一些小小的区别,例如名称等等,每个app中又需要分开发环境(Dev).测试环境(Test).正式环境(Pro). 下面就开始搭 ...