Description:

求$\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} d(i \times j)$

$d(i)$表示$i$的约数个数和。$n \leq 10^9$

废话:

好久没有做反演了感觉自己都不会了。。。

做了一遍发现自己真的不会了

手推了不知道多久终于推出了式子中间还错了一遍打了一半发现过不去样例

题解:

标签都知道了那也就没什么好说的了,直接上式子(类比《约数个数和》那道题)(以下分数皆表示整除向下取整)

$\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} d(i \times j)$

$=\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} \sum\limits_{a|i} \sum\limits_{b|j} [gcd(a,b)==1] $

$=\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} \sum\limits_{a|i} \sum\limits_{b|j} \sum\limits_{d|a \  and \  d|b} \mu (d) $

$=\sum\limits_{d=1}^{n} \mu (d) \sum\limits_{a=1}^{\frac{n}{d}} \sum\limits_{b=1}^{\frac{n}{d}} \frac{\frac{n}{d}}{a} \frac{\frac{n}{d}}{b}$

$=\sum\limits_{d=1}^{n} \mu (d) (\sum\limits_{i=1}^{\frac{n}{d}} \frac{\frac{n}{d}}{i})^2$

然后第二个$\sum$后面的东西视作函数$f(\frac{n}{d})$,可以整除分块,前面就是杜教筛得到$\mu$的前缀和

然后函数$f(\frac{n}{d})$的求值其实也就是一个整除分块。

其实$f(x)=\sum\limits_{i=1}^{x} d(i)$即$\sum\limits_{i=1}^{x} d(i) =\sum\limits_{i=1}^{x} \frac{x}{i}$

这里的$d(x)$函数也是约数个数的意思。%%%LrefraiNC

从含义上也可以理解。所以$f(x)$函数也可以杜教筛。但是我还没有做过$d(i)$的杜教筛所以我没有打。

杜教筛线筛预处理的范围应该在$n^{\frac{2}{3}}=10^6$不然慢的要死(虽说没有T)

 #include<cstdio>
#define mod 1000000007
struct hash_map{
int w[],fir[],l[],to[],cnt;
int &operator[](int x){
int r=x%;
for(int i=fir[r];i;i=l[i])if(to[i]==x)return w[i];
l[++cnt]=fir[r];fir[r]=cnt;to[cnt]=x;return w[cnt]=-;
}
}M;
int p[],mu[],pc;char np[];
int sum(int n){
if(n<=)return mu[n];
if(M[n]!=-)return M[n];
int a=;
for(int l=,r,A;l<=n;l=r+)A=n/l,r=n/A,a-=sum(A)*(r-l+);
return M[n]=a;
}
long long cal(int x,long long ans=){
for(int l=,r,a;l<=x;l=r+)a=x/l,r=x/a,ans=(ans+a*(r-l+1ll))%mod;
return ans*ans%mod;
}
int main(){
mu[]=;
for(int i=;i<=;++i){
if(!np[i])p[++pc]=i,mu[i]=-;
for(int j=;j<=pc&&i*p[j]<=;++j)
if(i%p[j])mu[i*p[j]]=-mu[i],np[i*p[j]]=-;
else np[i*p[j]]=-;
mu[i]+=mu[i-];
}
int n;long long ans=;scanf("%d",&n);
for(int l=,r,a;l<=n;l=r+)a=n/l,r=n/a,ans+=1ll*cal(a)*(sum(r)-sum(l-))%mod;
printf("%lld\n",(ans%mod+mod)%mod);
}

Lucas的数论:杜教筛,莫比乌斯反演的更多相关文章

  1. [bzoj 4176] Lucas的数论 (杜教筛 + 莫比乌斯反演)

    题面 设d(x)d(x)d(x)为xxx的约数个数,给定NNN,求 ∑i=1N∑j=1Nd(ij)\sum^{N}_{i=1}\sum^{N}_{j=1} d(ij)i=1∑N​j=1∑N​d(ij) ...

  2. 【XSY2731】Div 数论 杜教筛 莫比乌斯反演

    题目大意 定义复数\(a+bi\)为整数\(k\)的约数,当且仅当\(a\)和\(b\)为整数且存在整数\(c\)和\(d\)满足\((a+bi)(c+di)=k\). 定义复数\(a+bi\)的实部 ...

  3. BZOJ_4176_Lucas的数论_杜教筛+莫比乌斯反演

    BZOJ_4176_Lucas的数论_杜教筛+莫比乌斯反演 Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求 ...

  4. 【BZOJ4176】Lucas的数论-杜教筛

    求$$\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}f(ij)$$,其中$f(x)$表示$x$的约数个数,$0\leq n\leq 10^9$,答案膜$10^9+ ...

  5. bzoj 4176: Lucas的数论 -- 杜教筛,莫比乌斯反演

    4176: Lucas的数论 Time Limit: 30 Sec  Memory Limit: 256 MB Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么 ...

  6. BZOJ 4176: Lucas的数论 [杜教筛]

    4176: Lucas的数论 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_0(ij)\) \(n \le 10^9\) 代入\(\sigma_0(nm)=\sum_{ ...

  7. [CQOI2015][bzoj3930] 选数 [杜教筛+莫比乌斯反演]

    题面: 传送门 思路: 首先我们把区间缩小到$\left[\lfloor\frac{L-1}{K}\rfloor,\lfloor\frac{R}{K}\rfloor\right]$ 这道题的最特殊的点 ...

  8. [51Nod 1237] 最大公约数之和 (杜教筛+莫比乌斯反演)

    题目描述 求∑i=1n∑j=1n(i,j) mod (1e9+7)n<=1010\sum_{i=1}^n\sum_{j=1}^n(i,j)~mod~(1e9+7)\\n<=10^{10}i ...

  9. bzoj4176. Lucas的数论 杜教筛

    题意:求\(\sum_{i=1}^n\sum_{j=1}^nd(ij),d是约数个数函数\) 题解:首先有一个结论\(d(ij)=\sum_{x|i}\sum_{y|j}[(i,j)==1]\) 那么 ...

  10. bzoj 4916: 神犇和蒟蒻 (杜教筛+莫比乌斯反演)

    题目大意: 读入n. 第一行输出“1”(不带引号). 第二行输出$\sum_{i=1}^n i\phi(i)$. 题解: 所以说那个$\sum\mu$是在开玩笑么=.= 设$f(n)=n\phi(n) ...

随机推荐

  1. Python3 Linux安装(Redhat)

    Python3 Linux安装(Redhat): 下载Python-3.6.4.tgz: https://www.python.org/downloads/release/python-364/  Y ...

  2. MongoDB 学习笔记之 从数组中删除元素和指定数组位置

    从数组中删除元素: 从数组中删除单个元素: db.ArrayTest.updateOne({ "name" : "Bill"},{$pop: {"ad ...

  3. MySQL系统表的利用姿势(浅探)

    MySQL数据库文件读写 权限要求: 具备读写权限并且目标文件为可读内容 目标内容具有完整路径且目录可访问 目标内容是否具备文件读写操作权限 查看是否有文件读写权限 show variables li ...

  4. iOS渠道分包2种模式之包内注入文件分包

    解决问题:商业模式中会存在这样的形式1款app需要不同的运用团队(工会)去分包推广,谁推广的包下载的人数都会在服务器记录,不同渠道的标示唯一来区分. iOS渠道分包模式有两种 一.IDFA模式 IDF ...

  5. 【CV现状-3.3】特征提取与描述

    #磨染的初心--计算机视觉的现状 [这一系列文章是关于计算机视觉的反思,希望能引起一些人的共鸣.可以随意传播,随意喷.所涉及的内容过多,将按如下内容划分章节.已经完成的会逐渐加上链接.] 缘起 三维感 ...

  6. pycharm 2019/10 激活码 最新福利 (1)

    MTW881U3Z5-eyJsaWNlbnNlSWQiOiJNVFc4ODFVM1o1IiwibGljZW5zZWVOYW1lIjoiTnNzIEltIiwiYXNzaWduZWVOYW1lIjoiI ...

  7. Python多任务之进程

    Process多进程 进程的概念 程序是没有运行的代码,静态的: 进程是运行起来的程序,进程是一个程序运行起来之后和资源的总称: 程序只有一个,但同一份程序可以有多个进程:例如,电脑上多开QQ: 程序 ...

  8. asp.net core learn

    .NET Core WebApi RESTful规范 RESTful API 最佳实践 理解RESTful架构 接口版本控制 Support multiple versions of ASP.NET ...

  9. Android OkHttp + Retrofit 下载文件与进度监听

    本文链接 下载文件是一个比较常见的需求.给定一个url,我们可以使用URLConnection下载文件. 使用OkHttp也可以通过流来下载文件. 给OkHttp中添加拦截器,即可实现下载进度的监听功 ...

  10. JVM垃圾回收(下)

    接着上一篇,介绍完了 JVM 中识别需要回收的垃圾对象之后,这一篇我们来说说 JVM 是如何进行垃圾回收. 首先要在这里介绍一下80/20 法则: 约仅有20%的变因操纵着80%的局面.也就是说:所有 ...