Description:

求$\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} d(i \times j)$

$d(i)$表示$i$的约数个数和。$n \leq 10^9$

废话:

好久没有做反演了感觉自己都不会了。。。

做了一遍发现自己真的不会了

手推了不知道多久终于推出了式子中间还错了一遍打了一半发现过不去样例

题解:

标签都知道了那也就没什么好说的了,直接上式子(类比《约数个数和》那道题)(以下分数皆表示整除向下取整)

$\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} d(i \times j)$

$=\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} \sum\limits_{a|i} \sum\limits_{b|j} [gcd(a,b)==1] $

$=\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} \sum\limits_{a|i} \sum\limits_{b|j} \sum\limits_{d|a \  and \  d|b} \mu (d) $

$=\sum\limits_{d=1}^{n} \mu (d) \sum\limits_{a=1}^{\frac{n}{d}} \sum\limits_{b=1}^{\frac{n}{d}} \frac{\frac{n}{d}}{a} \frac{\frac{n}{d}}{b}$

$=\sum\limits_{d=1}^{n} \mu (d) (\sum\limits_{i=1}^{\frac{n}{d}} \frac{\frac{n}{d}}{i})^2$

然后第二个$\sum$后面的东西视作函数$f(\frac{n}{d})$,可以整除分块,前面就是杜教筛得到$\mu$的前缀和

然后函数$f(\frac{n}{d})$的求值其实也就是一个整除分块。

其实$f(x)=\sum\limits_{i=1}^{x} d(i)$即$\sum\limits_{i=1}^{x} d(i) =\sum\limits_{i=1}^{x} \frac{x}{i}$

这里的$d(x)$函数也是约数个数的意思。%%%LrefraiNC

从含义上也可以理解。所以$f(x)$函数也可以杜教筛。但是我还没有做过$d(i)$的杜教筛所以我没有打。

杜教筛线筛预处理的范围应该在$n^{\frac{2}{3}}=10^6$不然慢的要死(虽说没有T)

 #include<cstdio>
#define mod 1000000007
struct hash_map{
int w[],fir[],l[],to[],cnt;
int &operator[](int x){
int r=x%;
for(int i=fir[r];i;i=l[i])if(to[i]==x)return w[i];
l[++cnt]=fir[r];fir[r]=cnt;to[cnt]=x;return w[cnt]=-;
}
}M;
int p[],mu[],pc;char np[];
int sum(int n){
if(n<=)return mu[n];
if(M[n]!=-)return M[n];
int a=;
for(int l=,r,A;l<=n;l=r+)A=n/l,r=n/A,a-=sum(A)*(r-l+);
return M[n]=a;
}
long long cal(int x,long long ans=){
for(int l=,r,a;l<=x;l=r+)a=x/l,r=x/a,ans=(ans+a*(r-l+1ll))%mod;
return ans*ans%mod;
}
int main(){
mu[]=;
for(int i=;i<=;++i){
if(!np[i])p[++pc]=i,mu[i]=-;
for(int j=;j<=pc&&i*p[j]<=;++j)
if(i%p[j])mu[i*p[j]]=-mu[i],np[i*p[j]]=-;
else np[i*p[j]]=-;
mu[i]+=mu[i-];
}
int n;long long ans=;scanf("%d",&n);
for(int l=,r,a;l<=n;l=r+)a=n/l,r=n/a,ans+=1ll*cal(a)*(sum(r)-sum(l-))%mod;
printf("%lld\n",(ans%mod+mod)%mod);
}

Lucas的数论:杜教筛,莫比乌斯反演的更多相关文章

  1. [bzoj 4176] Lucas的数论 (杜教筛 + 莫比乌斯反演)

    题面 设d(x)d(x)d(x)为xxx的约数个数,给定NNN,求 ∑i=1N∑j=1Nd(ij)\sum^{N}_{i=1}\sum^{N}_{j=1} d(ij)i=1∑N​j=1∑N​d(ij) ...

  2. 【XSY2731】Div 数论 杜教筛 莫比乌斯反演

    题目大意 定义复数\(a+bi\)为整数\(k\)的约数,当且仅当\(a\)和\(b\)为整数且存在整数\(c\)和\(d\)满足\((a+bi)(c+di)=k\). 定义复数\(a+bi\)的实部 ...

  3. BZOJ_4176_Lucas的数论_杜教筛+莫比乌斯反演

    BZOJ_4176_Lucas的数论_杜教筛+莫比乌斯反演 Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求 ...

  4. 【BZOJ4176】Lucas的数论-杜教筛

    求$$\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}f(ij)$$,其中$f(x)$表示$x$的约数个数,$0\leq n\leq 10^9$,答案膜$10^9+ ...

  5. bzoj 4176: Lucas的数论 -- 杜教筛,莫比乌斯反演

    4176: Lucas的数论 Time Limit: 30 Sec  Memory Limit: 256 MB Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么 ...

  6. BZOJ 4176: Lucas的数论 [杜教筛]

    4176: Lucas的数论 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_0(ij)\) \(n \le 10^9\) 代入\(\sigma_0(nm)=\sum_{ ...

  7. [CQOI2015][bzoj3930] 选数 [杜教筛+莫比乌斯反演]

    题面: 传送门 思路: 首先我们把区间缩小到$\left[\lfloor\frac{L-1}{K}\rfloor,\lfloor\frac{R}{K}\rfloor\right]$ 这道题的最特殊的点 ...

  8. [51Nod 1237] 最大公约数之和 (杜教筛+莫比乌斯反演)

    题目描述 求∑i=1n∑j=1n(i,j) mod (1e9+7)n<=1010\sum_{i=1}^n\sum_{j=1}^n(i,j)~mod~(1e9+7)\\n<=10^{10}i ...

  9. bzoj4176. Lucas的数论 杜教筛

    题意:求\(\sum_{i=1}^n\sum_{j=1}^nd(ij),d是约数个数函数\) 题解:首先有一个结论\(d(ij)=\sum_{x|i}\sum_{y|j}[(i,j)==1]\) 那么 ...

  10. bzoj 4916: 神犇和蒟蒻 (杜教筛+莫比乌斯反演)

    题目大意: 读入n. 第一行输出“1”(不带引号). 第二行输出$\sum_{i=1}^n i\phi(i)$. 题解: 所以说那个$\sum\mu$是在开玩笑么=.= 设$f(n)=n\phi(n) ...

随机推荐

  1. 重学Golang系列(一): 深入理解 interface和reflect

    前言 interface(即接口),是Go语言中一个重要的概念和知识点,而功能强大的reflect正是基于interface.本文即是对Go语言中的interface和reflect基础概念和用法的一 ...

  2. SpringBoot运行时动态添加数据源

    此方案适用于解决springboot项目运行时动态添加数据源,非静态切换多数据源!!! 一.多数据源应用场景: 1.配置文件配置多数据源,如默认数据源:master,数据源1:salve1...,运行 ...

  3. GAN算法笔记

    本篇文章为Goodfellow提出的GAN算法的开山之作"Generative Adversarial Nets"的学习笔记,若有错误,欢迎留言或私信指正. 1. Introduc ...

  4. sprigboot项目中配置xml格式的logback

    slf4j依赖和logback的依赖 idea中springboot项目的resources目录下新建logback-spring.xml文件,内容大致如下: <?xml version=&qu ...

  5. 初识Django,了解一下大概流程

    学习Django一个礼拜了,对其有了一个大概的了解,自己画了一个简单的图,虽然有点丑,但是基本上已经把自己所想已经表达 写完这篇随笔之后发现自己逻辑表述的有点不太清晰,有点乱,哪里不对,希望各位指正 ...

  6. 《java编程思想》P160-P180(第八章部分+第九章部分)

    1.什么是多态? 多态的定义:指允许不同类的对象对同一消息做出响应.即同一消息可以根据发送对象的不同而采用多种不同的行为方式.(发送消息就是函数调用) 现实中,关于多态的例子不胜枚举.比方说按下 F1 ...

  7. 因果推理的春天-实用HTE(Heterogeneous Treatment Effects)论文github收藏

    一直以来机器学习希望解决的一个问题就是'what if',也就是决策指导: 如果我给用户发优惠券用户会留下来么? 如果患者服了这个药血压会降低么? 如果APP增加这个功能会增加用户的使用时长么? 如果 ...

  8. (未完)XSS漏洞实战靶场笔记

    记录下自己写的XSS靶场的write up,也是学习了常见xss漏洞类型的实战场景

  9. luogu P3878 [TJOI2010]分金币

    [返回模拟退火略解] 题目描述 今有 nnn 个数 {ai}\{a_i\}{ai​},把它们分成两堆{X},{Y}\{X\},\{Y\}{X},{Y},求一种分配使得∣∑i∈Xai−∑i∈Yai∣|\ ...

  10. [CF431C]k-Tree

    题目描述 Quite recently a creative student Lesha had a lecture on trees. After the lecture Lesha was ins ...