题目大意:要求你将全部非障碍格子都走一遍,形成回路(能够多回路),问有多少种方法

解题思路:

參考基于连通性状态压缩的动态规划问题 - 陈丹琦

下面为代码

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
#define N 12
#define S (1 << 12)
int n, m;
long long dp[N][N][S];
int cas = 1; void solve() {
scanf("%d%d", &n, &m);
memset(dp, 0, sizeof(dp)); int num;
dp[0][0][0] = 1;
for(int i = 0; i < n; i++) {
for(int j = 0; j < m; j++) {
scanf("%d", &num);
for(int k = 0; k < (1 << (m + 1)); k++) {
int left = k & (1 << m);
int up = k & (1 << j);
int l = (1 << m);
int u = (1 << j);
//假设是障碍
if(num == 0) {
if(!left && !up)
dp[i][j + 1][k] += dp[i][j][k];
continue;
}
//假设有左边那一个有右插头。上面那一个有下插头,那么当前格子仅仅能是L的镜像了,也就是左上型
if(left && up) {
dp[i][j + 1][k - l - u] += dp[i][j][k];
}//假设仅仅有左边那个有左插头。上面那个没有下插头,那么当前的可能有右插头,或者左下型插头
else if(left) {
dp[i][j + 1][k] += dp[i][j][k];
dp[i][j + 1][k - l + u] += dp[i][j][k];
}//假设仅仅有上面那个有下插头。左边那个没有右插头,那么当前的可能有下插头,或者上右型插头
else if(up) {//
dp[i][j + 1][k] += dp[i][j][k];
dp[i][j + 1][k - u + l] += dp[i][j][k];
}//假设上面没有下插头,左边没有右插头。那么仅仅能是下右型插头了
else {
dp[i][j + 1][k + l + u] += dp[i][j][k];
}
}
}
for(int j = 0; j < (1 << m); j++)
dp[i + 1][0][j] = dp[i][m][j];
}
printf("Case %d: There are %I64d ways to eat the trees.\n", cas++, dp[n][0][0]);
} int main() {
int test;
scanf("%d", &test);
while(test--) {
solve();
}
return 0;
}

HDU - 1693 Eat the Trees(多回路插头DP)的更多相关文章

  1. hdu 1693 Eat the Trees——插头DP

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1693 第一道插头 DP ! 直接用二进制数表示状态即可. #include<cstdio> # ...

  2. HDU 1693 Eat the Trees(插头DP、棋盘哈密顿回路数)+ URAL 1519 Formula 1(插头DP、棋盘哈密顿单回路数)

    插头DP基础题的样子...输入N,M<=11,以及N*M的01矩阵,0(1)表示有(无)障碍物.输出哈密顿回路(可以多回路)方案数... 看了个ppt,画了下图...感觉还是挺有效的... 参考 ...

  3. HDU 1693 Eat the Trees(插头DP)

    题目链接 USACO 第6章,第一题是一个插头DP,无奈啊.从头看起,看了好久的陈丹琦的论文,表示木看懂... 大体知道思路之后,还是无法实现代码.. 此题是插头DP最最简单的一个,在一个n*m的棋盘 ...

  4. HDU 1693 Eat the Trees(插头DP,入门题)

    Problem Description Most of us know that in the game called DotA(Defense of the Ancient), Pudge is a ...

  5. HDU 1693 Eat the Trees (插头DP)

    题意:给一个n*m的矩阵,为1时代表空格子,为0时代表障碍格子,问如果不经过障碍格子,可以画一至多个圆的话,有多少种方案?(n<12,m<12) 思路: 这题不需要用到最小表示法以及括号表 ...

  6. HDU 1693 Eat the Trees ——插头DP

    [题目分析] 吃树. 直接插头DP,算是一道真正的入门题目. 0/1表示有没有插头 [代码] #include <cstdio> #include <cstring> #inc ...

  7. hdu 1693 : Eat the Trees 【插头dp 入门】

    题目链接 题意: 给出一个n*m大小的01矩阵,在其中画线连成封闭图形,其中对每一个值为1的方格,线要恰好穿入穿出共两次,对每一个值为0的方格,所画线不能经过. 参考资料: <基于连通性状态压缩 ...

  8. HDU 1693 Eat the Trees

    第一道(可能也是最后一道)插头dp.... 总算是领略了它的魅力... #include<iostream> #include<cstdio> #include<cstr ...

  9. 【HDU】1693 Eat the Trees

    http://acm.hdu.edu.cn/showproblem.php?pid=1693 题意:n×m的棋盘求简单回路(可以多条)覆盖整个棋盘的方案,障碍格不许摆放.(n,m<=11) #i ...

随机推荐

  1. ANDROID_MARS学习笔记_S01原始版_013_广播机制二

    一.代码1.xml(1)main.xml <?xml version="1.0" encoding="utf-8"?> <LinearLayo ...

  2. USB Type-C,接口上的大统一?

    这款 24-pin 连接器的机械设计反应了设计人员从 Micro-B 连接器上获得的历史教训,它无需确定插入的正反方向并可实现 10000 次的插拔.使用者再也不需要担心“哪头上,哪头下”,因为 US ...

  3. Delphi GDI+ Library

    GDI+ LibraryThis library enables GDI+ functionality for Delphi 2009 and later. It differs from other ...

  4. 161. One Edit Distance

    题目: Given two strings S and T, determine if they are both one edit distance apart. 链接: http://leetco ...

  5. 【Linux安全】防止 root 用户远程登录

    防止 root 用户远程登录,在终端输入以下命令: vim /etc/ssh/sshd_config 修改如下行为:no PermitRootLogin no 如图所示:

  6. vc:如何从Internet上有效而稳定地下载文件

    http://www.vckbase.com/index.php/wv/172 如何从Internet上有效而稳定地下载文件 ,这是很多网络应用程序要考虑的重要问题,本文提供的代码段针对这个问题进行了 ...

  7. Android开发UI之Notification

    Notification,顾名思义,通知,就是我们常说的系统推送. 官网链接:http://developer.android.com/reference/android/app/Notificati ...

  8. 如何修改word的项目编号

    在操作word文档时,有时会遇到word文档中的项目编号不是自己需要的,并造成word项目编号的混乱,如何word中的两级项目编号不统一,为解决会word的项目编号混乱问题,小编将教大家如何修改wor ...

  9. BZOJ_1625_ [Usaco2007_Dec]_宝石手镯_(01背包)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1625 01背包裸题. p.s.随便点开一道就是水题... 分析 ... #include &l ...

  10. 【转】Android 学习笔记——利用JNI技术在Android中调用、调试C++代码

    原文网址:http://cherishlc.iteye.com/blog/1756762 在Android中调用C++其实就是在Java中调用C++代码,只是在windows下编译生成DLL,在And ...