NOIP2002 矩形覆盖
题四 矩形覆盖(存盘名NOIPG4)
[问题描述]:
在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示。例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一。
这些点可以用 k 个矩形(1<=k<=4)全部覆盖,矩形的边平行于坐标轴。当 k=2 时,可用如图二的两个矩形 sl,s2 覆盖,s1,s2 面积和为 4。问题是当 n 个点坐标和 k 给出后,怎样才能使得覆盖所有点的 k 个矩形的面积之和为最小呢。约定:覆盖一个点的矩形面积为 0;覆盖平行于坐标轴直线上点的矩形面积也为0。各个矩形必须完全分开(边线与顶点也都不能重合)。
[输入]:
键盘输人文件名。文件格式为
n k
xl y1
x2 y2
... ...
xn yn (0<=xi,yi<=500)
[输出]:
输出至屏幕。格式为:
一个整数,即满足条件的最小的矩形面积之和。
[输入输出样例]
d.in :
4 2
1 1
2 2
3 6
0 7
屏幕显示:
4
【思路】
回溯法。
搜索依次确定每个点属于哪一个矩形,时间复杂度为O(50^4)。最优解剪枝+如果相交则剪枝。
在网上看到了DP的做法:
f[i][j][k]=min{ f[i][l][k-1]+S(l+1,j) }
算法并不完美(只出现了矩形包含的点连续的情况,还有可能不连续),因为数据比较弱所以才能AC,但不失为一种可以借鉴的思路。
【dfs代码】
#include<iostream>
#include<cstring>
#define FOR(a,b,c) for(int a=(b);a<=(c);a++)
using namespace std; const int maxn = +;
struct Matrix{
int a,b,c,d;
bool flag;
Matrix() { flag=false; }
}re[]; int x[maxn],y[maxn];
int n,m,ans; bool in(int x,int y,Matrix A) {
return (x>=A.a && x<=A.b && y>=A.c && y<=A.d);
} bool can(int i,int j) {
bool ans=;
if(in(re[i].a,re[i].c,re[j])) return ;
if(in(re[i].a,re[i].d,re[j])) return ;
if(in(re[i].b,re[i].c,re[j])) return ;
if(in(re[i].b,re[i].d,re[j])) return ;
return ;
} void dfs(int d) {
Matrix tmp;
int sum=;
FOR(i,,m)
if(re[i].flag)
{
sum += (re[i].b-re[i].a)*(re[i].d-re[i].c);
FOR(j,i+,m)
if(re[j].flag && (can(i,j))) return ;
} if(sum>=ans) return ;
if(d>n) { ans=sum; return ; }
FOR(i,,m) {
tmp=re[i];
if(!re[i].flag) {
re[i].flag=;
re[i].a=re[i].b=x[d];
re[i].c=re[i].d=y[d];
}
else {
re[i].a=min(re[i].a,x[d]);
re[i].b=max(re[i].b,x[d]);
re[i].c=min(re[i].c,y[d]);
re[i].d=max(re[i].d,y[d]);
}
dfs(d+);
re[i]=tmp;
}
} int main() {
ios::sync_with_stdio(false);
cin>>n>>m;
FOR(i,,n) cin>>x[i]>>y[i];
ans=1e9;
dfs();
cout<<ans;
return ;
}
【dp代码】
#include<iostream>
#define Max 1000000
using namespace std; int n,m,ans=Max,x[],y[],f[][][]={}; int High(int i,int j){
int maxh=,minh=,temp=i;
while(temp<=j)
maxh=max(maxh,y[temp++]);
temp=i;
while(temp<=j)
minh=min(minh,y[temp++]);
return maxh-minh;
} void Dp(){
for(int i=;i<=n;++i)
for(int j=;j<=n;++j)
for(int k=;k<=m;++k)
f[i][j][k]=Max; for(int i=;i<=n;++i)
for(int j=i+;j<=n;++j)
f[i][j][]=(x[j]-x[i])*High(i,j);
for(int i=;i<=n;++i)
for(int k=;k<=m;++k)
f[i][i][k]=; for(int k=;k<=m;++k)
for(int i=;i<=n;++i)
for(int j=i+;j<=n;++j)
for(int l=i+;l<=j;++l)
f[i][j][k]=min(f[i][j][k],f[i][l-][k-]+(x[j]-x[l])*High(l,j)); ans=min(ans,f[][n][m]);
} int main()
{
cin>>n>>m;
for(int i=;i<=n;++i)
cin>>x[i]>>y[i]; for(int i=;i<=n;++i)
for(int j=i+;j<=n;++j)
if(x[i]>x[j]) {swap(x[i],x[j]);swap(y[i],y[j]);}
else if(x[i]==x[j]&&y[i]>=y[j]) swap(y[i],y[j]); Dp(); for(int i=;i<=n;++i)
swap(x[i],y[i]); for(int i=;i<=n;++i)
for(int j=i+;j<=n;++j)
if(x[i]>x[j]) {swap(x[i],x[j]);swap(y[i],y[j]);}
else if(x[i]==x[j]&&y[i]>=y[j]) swap(y[i],y[j]); Dp(); cout<<ans<<endl;
return ; }
NOIP2002 矩形覆盖的更多相关文章
- [LuoguP1034][Noip2002] 矩形覆盖
[LuoguP1034][Noip2002] 矩形覆盖(Link) 在平面上有\(N\)个点,\(N\)不超过五十, 要求将这\(N\)个点用\(K\)个矩形覆盖,\(k\)不超过\(4\),要求最小 ...
- NOIP2002矩形覆盖[几何DFS]
题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一. 这 ...
- 洛谷1034 NOIP2002 矩形覆盖
问题描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7). 这些点可以 ...
- COGS103&tyvj1899 [NOIP2002]矩形覆盖
题目里给的范围是k<=4,但是官方数据并没有k==4的情况,导致一些奇奇怪怪的DP写法也能过.听说标程在k==4的时候有反例,掀桌-.. 难怪COGS上k==4的数据答案是错的. 还是好好写个搜 ...
- 【OpenJudge 1793】矩形覆盖
http://noi.openjudge.cn/ch0405/1793/ 好虐的一道题啊. 看数据范围,一眼状压,然后调了好长时间QwQ 很容易想到覆盖的点数作为状态,我用状态i表示至少覆盖状态i表示 ...
- bzoj 1185 旋转卡壳 最小矩形覆盖
题目大意 就是求一个最小矩形覆盖,逆时针输出其上面的点 这里可以看出,那个最小的矩形覆盖必然有一条边经过其中凸包上的两个点,另外三条边必然至少经过其中一个点,而这样的每一个点逆时针走一遍都满足单调性 ...
- [剑指OFFER] 斐波那契数列- 跳台阶 变态跳台阶 矩形覆盖
跳台阶 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. class Solution { public: int jumpFloor(int number) ...
- UVA-11983-Weird Advertisement(线段树+扫描线)[求矩形覆盖K次以上的面积]
题意: 求矩形覆盖K次以上的面积 分析: k很小,可以开K颗线段树,用sum[rt][i]来保存覆盖i次的区间和,K次以上全算K次 // File Name: 11983.cpp // Author: ...
- 【旋转卡壳+凸包】BZOJ1185:[HNOI2007]最小矩形覆盖
1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 1945 Solve ...
随机推荐
- 不相交集合ADT
不相交集合数据结构保持一组不相交的动态集合S={S1,S2,...,SK},每个集合通过一个代表来识别,代表即集合中的某个成员. 如果x表示一个对象,不相交集合支持以下操作: MAKE-SET(x): ...
- 【算法】桶排->冒泡->快排
啊哈 算法 http://pan.baidu.com/s/1jGGl2SI http://pan.baidu.com/s/15C1oq 1 节 最快最简单的排序——桶排序 在我们生活的这个世界中到处都 ...
- 【git】切换分支获取代码
Welcome to Git (version 1.9.5-preview20150319) Run 'git help git' to display the help index.Run 'git ...
- jquery mobile script
http://blog.csdn.net/lyatzhongkong/article/details/6969913 http://book.51cto.com/art/201209/355980.h ...
- Unity之串口通信(基于三姿态传感器)
原地址:http://www.cnblogs.com/alongu3d/archive/2013/05/02/3054962.html /******************************* ...
- [Gauss]POJ3185 The Water Bowls
题意:反正就是要给的一串01的变成全0 能影响自己和左右 最少需要几步 01方程组 异或解 ][]; // 增广矩阵 ]; // 解 ]; // 标记是否为自由未知量 int n; void debu ...
- MS提供的虚拟机IE测试
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
- 《ArcGIS Engine+C#实例开发教程》
原文:<ArcGIS Engine+C#实例开发教程> 摘要:<ArcGIS Engine+C#实例开发教程>,面向 ArcGIS Engine(以下简称AE)开发初学者,本教 ...
- html5 鼠标跟随运动
<!DOCTYPE HTML> <html lang="en-US"> <head> <meta charset="UTF-8& ...
- LinearLayout按下(pressed)或获取焦点(focused)时背景设置不同颜色或图片
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" android:id=&qu ...