题意:给出平面上n个白点n个黑点,要求两两配对,且配对所连线段没有交点。

法一:暴力

随机一个初始方案,枚举任意两条线段如果有交点就改一下。

效率其实挺好的。

法二:二分图最佳完美匹配

显然没有交点的方案是所有线段的长度和最小的方案,将边权构造为欧几里德距离即可,$O(n^4)$的算法效率远不及法一,$O(n^3)$与法一持平。

法三:分治

这是紫书上介绍的方法,每次找出一个最下最左的点,将其他的点相对于这个点进行极角排序,按极角序扫描,当白点和黑点一样多时(算上最下最左那个点),将第一个点和最后一个点配对,递归处理剩下的两部分。时间复杂度大概是$O(n^2\log{n})$的?效率最高。

 #include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<iostream> using namespace std;
const int N = + ; #include<cmath>
struct Point {
int x, y;
Point() {}
Point(int x, int y) : x(x), y(y) {}
double angle(const Point& p) const {
return atan2(y - p.y, x - p.x);
}
bool operator < (const Point &rhs) const {
return y < rhs.y || (y == rhs.y && x < rhs.x);
}
void read() {
scanf("%d%d", &x, &y);
}
}; int n;
struct Node {
Point p;
int id;
double ang; bool operator < (const Node &rhs) const {
return ang < rhs.ang;
} void getangle(const Point& p0) {
ang = p.angle(p0);
} int type() const {
return id <= n ? : -;
}
}p[N * ]; int ans[N * ]; void solve(int l, int r) {
if(l > r) return;
int pos = l;
for(int i = l + ; i <= r; i++) {
if(p[i].p < p[pos].p) pos = i;
}
swap(p[pos], p[l]);
int cnt = p[l].type();
for(int i = l + ; i <= r; i++) {
p[i].getangle(p[l].p);
}
sort(p + l + , p + r + );
for(int i = l + ; i <= r; i++) {
cnt += p[i].type();
if(!cnt) {
ans[p[l].id] = p[i].id;
ans[p[i].id] = p[l].id;
solve(l + , i - );
solve(i + , r);
return;
}
}
} int main() {
while(scanf("%d", &n) == ) {
for(int i = ; i <= (n << ); i++) {
p[i].p.read();
p[i].id = i;
} solve(, n << );
for(int i = ; i <= n; i++) {
printf("%d\n", ans[i] - n);
}
} return ;
}

分治算法

UVaLive4043 UVa1411 Ants 巨人与鬼的更多相关文章

  1. 1411 - Ants(巨人与鬼)

    参考博客 紫薯P230 题意:给出平面上n个白点n个黑点,要求两两配对,且配对所连线段没有交点. 紫薯思路:找出y坐标最小的点,如果多个,考虑x最小的.将其他点相对于这个点按极角从小到大排序,然后开始 ...

  2. 【题解】Luogu UVA1411 Ants

    原题传送门 博客里对二分图匹配的详细介绍 这道题是带权二分图匹配 用的是KM算法 我们要知道一个定理:要使线段没有相交,要使距离总和最小 我们先把任意一对白点.黑点的距离算一下 然后运用KM算法 因为 ...

  3. UVA1411 Ants

    想出的一道题竟然是原题QAQ 非常有趣的一个题 根据三角形两边之和大于第三边 所以相交的线段一定是比不相交的线段要长的 所以直接二分图构图 最小费用最大流即可 (我不管我不管我要把这个出到NOIP膜你 ...

  4. UVa 1411 Ants(分治)

    https://vjudge.net/problem/UVA-1411 题意:n只蚂蚁和n颗苹果树,一一配对并且不能交叉. 思路:这就是巨人与鬼的问题.用分治法就行了. #include<ios ...

  5. 使用ANTS Performance Profiler&ANTS Memory Profiler工具分析IIS进程内存和CPU占用过高问题

    一.前言 最近一段时间,网站经常出现两个问题: 1.内存占用率一点点增高,直到将服务器内存占满. 2.访问某个页面时,页面响应过慢,CPU居高不下. 初步判断内存一点点增多可能是因为有未释放的资源一直 ...

  6. APIJSON,让接口见鬼去吧!

    我: APIJSON,让接口见鬼去吧! https://github.com/TommyLemon/APIJSON 服务端: 什么鬼? 客户端: APIJSON是啥? 我: APIJSON是一种JSO ...

  7. poj1852 Ants ——想法题、水题

    求最短时间和最长时间. 当两个蚂蚁相遇的时候,可以看做两个蚂蚁穿过,对结果没有影响.O(N)的复杂度 c++版: #include <cstdio> #define min(a, b) ( ...

  8. 【初窥javascript奥秘之事件机制】论“点透”与“鬼点击”

    前言 最近好好的研究了一番移动设备的点击响应速度,期间不断的被自己坑,最后搞得焦头烂额,就是现在可能还有一些问题,但是过程中感觉自己成长不少, 最后居然感觉对javascript事件机制有了更好的认识 ...

  9. Uva10881 Piotr's Ants

    蚂蚁相撞会各自回头.←可以等效成对穿而过,这样移动距离就很好算了. 末状态蚂蚁的顺序和初状态其实是相同的. 那么剩下的就是记录每只蚂蚁的标号,模拟即可. /*by SilverN*/ #include ...

随机推荐

  1. new、delete用法(一)

    第一部分:new的使用: #define DEBUG_NEW new(THIS_FILE, __LINE__)解释 THIS_FILE:表示当前类所处的文件名: __LINE__:表示分配内存操作所在 ...

  2. Mindjet MindManager 2012 从模板创建出现“Runtime Error pure virtual function call” 解决方法

    我的Mindjet MindManager 2012 Pro也就是MindManager10 在应用模板之后总会显示 Microsoft Visual C++ Runtime Library Runt ...

  3. Android Studio中JNI -- 1 -- 配置方法

    1.配置NDK 1.1 下载NDK Android Studio 1.2 配 android-ndk-r10e,不同版本的Studio需要配置不同的ndk,下载完成后,随便解压放至某个文件目录下 1. ...

  4. Linux 安装配置 JDK 8

    所需软件包, 可以到Oracle官网去下载,  放到/usr/local/src文件夹下: jdk-8u45-linux-x64.tar.gz 安装: cd /usr/local/srctar -zx ...

  5. [Machine Learning] Probabilistic Graphical Models:二、Bayes Network Fundamentals(1、Semantics & Factorization)

    一.How to construct the dependency? 1.首字母即随机变量名称 2.I->G是更加复杂的模型,但Bayes里不考虑,因为Bayes只是无环图. 3.CPD = c ...

  6. thinkphp3.2 namespace及use用法

    PHP 5.3中的namespace其实是个不错的东西,可以简化编程,下面介绍三类在代码中 访问namespace中类的方法 1 引用namespace和类   假设namespace的程序为name ...

  7. python【第十二篇下】操作MySQL数据库以及ORM之 sqlalchemy

    内容一览: 1.Python操作MySQL数据库 2.ORM sqlalchemy学习 1.Python操作MySQL数据库 2. ORM sqlachemy 2.1 ORM简介 对象关系映射(英语: ...

  8. 用Django搭建个人博客—(3)

    今日主题 定义博客文章和评论的的数据库定义 定义操作这几个Model的后台数据 User表 USER_STATUS = ( ('active', u'激活'), ('suspended', u'禁用' ...

  9. WPF布局容器综合展示

    Border控件,以及几个重要要的属性:Background:背景的 Brush 对象BorderBrush:用来绘制边框BorderThickness: Border 边框的宽度,设置边框每一边的线 ...

  10. 【转载】利用jetty+Eclipse实现超轻量级web开发

    之前一直使用maven的jetty插件.今天换种方式. 使用下面介绍的方式你只有一个java project就行. 开发环境更简单,debug也更方便,不需要remote debug的方式,jetty ...