最近一直在做相关推荐方面的研究与应用工作,召回率与准确率这两个概念偶尔会遇到,知道意思,但是有时候要很清晰地向同学介绍则有点转不过弯来。

召回率和准确率是数据挖掘中预测、互联网中的搜索引擎等经常涉及的两个概念和指标。
召回率:Recall,又称“查全率”——还是查全率好记,也更能体现其实质意义。

准确率:Precision,又称“精度”、“正确率”。

以检索为例,可以把搜索情况用下图表示:

 
相关
不相关
检索到
A
B
未检索到
C
D
A:检索到的,相关的(搜到的也想要的)
B:检索到的,但是不相关的          (搜到的但没用的)
C:未检索到的,但却是相关的       
(没搜到,然而实际上想要的)
D:未检索到的,也不相关的         
(没搜到也没用的)

召回率:如果我们希望:被检索到的内容越多越好,这是追求“查全率”,即A/(A+C),越大越好。
准确率:如果我们希望:检索到的文档中,真正想要的、也就是相关的越多越好,不相关的越少越好,这是追求“准确率”,即A/(A+B),越大越好。

“召回率”与“准确率”虽然没有必然的关系(从上面公式中可以看到),在实际应用中,是相互制约的。要根据实际需求,找到一个平衡点。

往往难以迅速反应的是“召回率”。我想这与字面意思也有关系,从“召回”的字面意思不能直接看到其意义。“召回”在中文的意思是:把xx调回来。“召回率”对应的英文“recall”,recall除了有上面说到的“order
sth to return”的意思之外,还有“remember”的意思。
Recall:the ability to remember sth.
that you have learned or sth. that has happened in the
past.
当我们问检索系统某一件事的所有细节时(输入检索query查询词),Recall指:检索系统能“回忆”起那些事的多少细节,通俗来讲就是“回忆的能力”。“能回忆起来的细节数”
除以 “系统知道这件事的所有细节”,就是“记忆率”,也就是recall——召回率。简单的,也可以理解为查全率。

召回率与准确率[ZZ]的更多相关文章

  1. 精确率、召回率、准确率与ROC曲线

    精确率表示的是预测为某类样本(例如正样本)中有多少是真正的该类样本,一般用来评价分类任务模型. 比如对于一个分类模型,预测结果为A类的所有样本中包含A0个真正的A样本,和A1个不是A样本的其他类样本, ...

  2. Recall(召回率);Precision(准确率);F1-Meature(综合评价指标);true positives;false positives;false negatives..

    转自:http://blog.csdn.net/t710smgtwoshima/article/details/8215037   Recall(召回率);Precision(准确率);F1-Meat ...

  3. 目标检测评价标准(mAP, 精准度(Precision), 召回率(Recall), 准确率(Accuracy),交除并(IoU))

    1. TP , FP , TN , FN定义 TP(True Positive)是正样本预测为正样本的数量,即与Ground truth区域的IoU>=threshold的预测框 FP(Fals ...

  4. 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure

    yu Code 15 Comments  机器学习(ML),自然语言处理(NLP),信息检索(IR)等领域,评估(Evaluation)是一个必要的 工作,而其评价指标往往有如下几点:准确率(Accu ...

  5. 评估指标:准确率(Precision)、召回率(Recall)以及F值(F-Measure)

    为了能够更好的评价IR系统的性能,IR有一套完整的评价体系,通过评价体系可以了解不同信息系统的优劣,不同检索模型的特点,不同因素对信息检索的影响,从而对信息检索进一步优化. 由于IR的目标是在较短时间 ...

  6. fashion_mnist 计算准确率、召回率、F1值

    本文发布于 2020-12-27,很可能已经过时 fashion_mnist 计算准确率.召回率.F1值 1.定义 首先需要明确几个概念: 假设某次预测结果统计为下图: 那么各个指标的计算方法为: A ...

  7. 正确率、召回率和 F 值

    原文:http://peghoty.blog.163.com/blog/static/49346409201302595935709/ 正确率.召回率和 F 值是在鱼龙混杂的环境中,选出目标的重要评价 ...

  8. 召回率(Recall),精确率(Precision),平均正确率

    https://blog.csdn.net/yanhx1204/article/details/81017134 摘要 在训练YOLO v2的过程中,系统会显示出一些评价训练效果的值,如Recall, ...

  9. 机器学习入门-概率阈值的逻辑回归对准确度和召回率的影响 lr.predict_proba(获得预测样本的概率值)

    1.lr.predict_proba(under_text_x)  获得的是正负的概率值 在sklearn逻辑回归的计算过程中,使用的是大于0.5的是正值,小于0.5的是负值,我们使用使用不同的概率结 ...

随机推荐

  1. is not mapped 解决方法

    1.确定是否已配置相关XML 2.注意类名大小写问题 3.如果是注解 第一种方式 @Entity(name = "Tb_User") public class User {     ...

  2. JavaScript高级程序设计29.pdf

    insertAdjacentHTML方法 插入标记最后一个新增的方式是insertAdjacentHTML()方法,它接收两个参数:插入位置和要插入的HTML文本,第一个参数必须是下列值之一: &qu ...

  3. RHEL7下安装使用TensorFlow和kcws

    0.安装依赖包 #用pip安装python科学计算库numpy,sklearn,scipysu - wget http://dl.fedoraproject.org/pub/epel/7/x86_64 ...

  4. 修复直接删除linux系统后grub丢失错误

    如果删除了系统后,grub丢失,开机出现“grub>”的话,可以用如下代码进入目标linux系统:grub>ls (hd0,X)/boot             //x为目标系统所在分区 ...

  5. fetion for linux

  6. NTP DDOS攻击

    客户端系统会ping到NTP服务器来发起时间请求更换,同步通常每隔10分钟发生: 从NTP服务器发回到客户端的数据包可能比初始请求大几百倍.相比之下,通常用于放大攻击中的DNS响应被限制仅为8倍的带宽 ...

  7. Yii - 验证和授权(Authentication and Authorization)

    1. 定义身份类 (Defining Identity Class)  为了验证一个用户,我们定义一个有验证逻辑的身份类.这个身份类实现[IUserIdentity] 接口.不同的类可能实现不同的验证 ...

  8. CSS围住浮动元素的三种方法

    浮动元素脱离了文档流,其父元素看不到它了,因而不会包围它.浮动会“扩散”到下一个清除浮动的元素处.这会引起不想要的页面布局效果. 清除浮动的方法有三种: 1.父元素overflow:hidden 2. ...

  9. ajax 小案例

    ajax 异步提交数据,实现无刷新提交表单 ajax.html <!DOCTYPE html> <html> <head> <meta charset=&qu ...

  10. 使用PHPmailer发送邮件的详细代码

    一.使用PHPMailer发送邮件的原因 PHP有内置的mail()方法,但是由于一些主机空间不支持该方法,所以经常会遇到无法发送邮件的情况. 所以,可以下载PHPMailer类,实现邮件发送. 二. ...