Apache Amoro数据湖管理和治理工具部署
一、Amoro介绍
2024 年 3 月 11 日,Amoro 项目顺利通过投票,正式进入 Apache 软件基金会(ASF,Apache Software Foundation)的孵化器,成为 ASF 的一个孵化项目。
Amoro 是建立在开放数据湖表格式之上的湖仓管理系统。2020 年开始, 网易大数据团队在公司内基于 Apache Iceberg 进行湖仓一体架构的探索,孵化了流式湖仓服务 Arctic。
官网:https://amoro.apache.org/
二、安装
注:更新情况下先暂停服务,然后备份
1、下载amoro包(root用户)
cd /root/wang
wget https://******/amoro/amoro-0.7.0-gaotu.tar.gz
2、解压(root用户)
tar -zxf amoro-0.7.0-gaotu.tar.gz
mv amoro-0.7.0 amoro
3、下载mysql jar包
cd /root/wang/amoro/lib
MYSQL_JDBC_DRIVER_VERSION=8.0.30
wget https://repo1.maven.org/maven2/mysql/mysql-connector-java/${MYSQL_JDBC_DRIVER_VERSION}/mysql-connector-java-${MYSQL_JDBC_DRIVER_VERSION}.jar
4、建amoro库
mysql -h127.0.0.1 -uroot -p123456
CREATE DATABASE IF NOT EXISTS amoro;
5、修改配置信息(可以直接复制以前的配置文件)
cd /root/wang/amoro/conf
修改项:server-expose-host(本机内网ip)、bind-port:(服务端口9091)、 url: jdbc:mysql(mysql账号密码信息)
ams:
admin-username: admin
admin-password: admin
server-bind-host: "0.0.0.0"
server-expose-host: "本地ip地址"
thrift-server:
max-message-size: 104857600 # 100MB
selector-thread-count: 2
selector-queue-size: 4
table-service:
bind-port: 1260
worker-thread-count: 20
optimizing-service:
bind-port: 1261
http-server:
bind-port: 9092
rest-auth-type: basic
refresh-external-catalogs:
interval: 180000 # 3min
thread-count: 10
queue-size: 1000000
refresh-tables:
thread-count: 10
interval: 60000 # 1min
self-optimizing:
commit-thread-count: 10
runtime-data-keep-days: 30
runtime-data-expire-interval-hours: 1
optimizer:
heart-beat-timeout: 60000 # 1min
task-ack-timeout: 30000 # 30s
polling-timeout: 3000 # 3s
max-planning-parallelism: 1 # default 1
blocker:
timeout: 60000 # 1min
# optional features
expire-snapshots:
enabled: true
thread-count: 10
clean-orphan-files:
enabled: true
thread-count: 10
clean-dangling-delete-files:
enabled: true
thread-count: 10
sync-hive-tables:
enabled: true
thread-count: 10
data-expiration:
enabled: false
thread-count: 10
interval: 1d
auto-create-tags:
enabled: true
thread-count: 3
interval: 60000 # 1min
# database:
# type: derby
# jdbc-driver-class: org.apache.derby.jdbc.EmbeddedDriver
# url: jdbc:derby:/root/amoro/derby-persistent;create=true
# connection-pool-max-total: 20
# connection-pool-max-idle: 16
# connection-pool-max-wait-millis: 1000
# MySQL database configuration.
database:
type: mysql
jdbc-driver-class: com.mysql.cj.jdbc.Driver
url: jdbc:mysql://127.0.0.1:3306/amoro?useUnicode=true&characterEncoding=UTF8&autoReconnect=true&useAffectedRows=true&allowPublicKeyRetrieval=true&useSSL=false
username: root
password: 123456
connection-pool-max-total: 20
connection-pool-max-idle: 16
connection-pool-max-wait-millis: 1000
# Postgres database configuration.
# database:
# type: postgres
# jdbc-driver-class: org.postgresql.Driver
# url: jdbc:postgresql://127.0.0.1:5432/db
# username: user
# password: passwd
# connection-pool-max-total: 20
# connection-pool-max-idle: 16
# connection-pool-max-wait-millis: 1000
terminal:
backend: local
local.spark.sql.iceberg.handle-timestamp-without-timezone: false
# Kyuubi terminal backend configuration.
# terminal:
# backend: kyuubi
# kyuubi.jdbc.url: jdbc:hive2://127.0.0.1:10009/
# High availability configuration.
# ha:
# enabled: true
# cluster-name: default
# zookeeper-address: 192.168.88.170:2181,192.168.88.104:2182,192.168.88.164:2183
containers:
- name: localContainer
container-impl: org.apache.amoro.server.manager.LocalOptimizerContainer
properties:
export.JAVA_HOME: "/usr/local/jdk" # JDK environment
#containers:
# - name: KubernetesContainer
# container-impl: org.apache.amoro.server.manager.KubernetesOptimizerContainer
# properties:
# kube-config-path: ~/.kube/config
# image: apache/amoro:{version}
# namespace: default
- name: flinkContainer
container-impl: org.apache.amoro.server.manager.FlinkOptimizerContainer
properties:
flink-home: /usr/local/service/flink/ # Flink install home
target: yarn-per-job # Flink run target, (yarn-per-job, yarn-application, kubernetes-application)
export.JVM_ARGS: -Djava.security.krb5.conf=/etc/krb5.conf # Flink launch jvm args, like kerberos config when ues kerberos
export.HADOOP_CONF_DIR: /usr/local/service/hadoop/etc/hadoop/ # Hadoop config dir
export.HADOOP_USER_NAME: hadoop # Hadoop user submit on yarn
export.FLINK_CONF_DIR: /usr/local/service/flink/conf/ # Flink config dir
# # flink kubernetes application properties.
# job-uri: "local:///opt/flink/usrlib/optimizer-job.jar" # Optimizer job main jar for kubernetes application
# flink-conf.kubernetes.container.image: "apache/amoro-flink-optimizer:{version}" # Optimizer image ref
# flink-conf.kubernetes.service-account: flink # Service account that is used within kubernetes cluster.
flink-conf.jobmanager.memory.process.size: 1024M
flink-conf.taskmanager.memory.process.size: 1024M
#containers:
- name: sparkContainer
container-impl: org.apache.amoro.server.manager.SparkOptimizerContainer
properties:
spark-home: /usr/local/service/spark/ # Spark install home
master: yarn # The cluster manager to connect to. See the list of https://spark.apache.org/docs/latest/submitting-applications.html#master-urls.
deploy-mode: cluster # Spark deploy mode, client or cluster
export.JVM_ARGS: -Djava.security.krb5.conf=/etc/krb5.conf # Spark launch jvm args, like kerberos config when ues kerberos
export.HADOOP_CONF_DIR: /usr/local/service/hadoop/etc/hadoop/ # Hadoop config dir
export.HADOOP_USER_NAME: hadoop # Hadoop user submit on yarn
export.SPARK_CONF_DIR: /usr/local/service/spark/conf/ # Spark config dir
# # spark kubernetes application properties.
# job-uri: "local:///opt/spark/usrlib/optimizer-job.jar" # Optimizer job main jar for kubernetes application
# ams-optimizing-uri: thrift://ams.amoro.service.local:1261 # AMS optimizing uri
# spark-conf.spark.dynamicAllocation.enabled: "true" # Enabling DRA feature can make full use of computing resources
spark-conf.spark.shuffle.service.enabled: "true" # If spark DRA is used on kubernetes, we should set it false
spark-conf.spark.dynamicAllocation.shuffleTracking.enabled: "true" # Enables shuffle file tracking for executors, which allows dynamic allocation without the need for an external shuffle service
# spark-conf.spark.kubernetes.container.image: "apache/amoro-spark-optimizer:{version}" # Optimizer image ref
# spark-conf.spark.kubernetes.namespace: <spark-namespace> # Namespace that is used within kubernetes cluster
# spark-conf.spark.kubernetes.authenticate.driver.serviceAccountName: <spark-sa> # Service account that is used within kubernetes cluster.
spark-conf.spark.driver.userClassPathFirst: "true"
spark-conf.spark.executor.userClassPathFirst: "true"
spark-conf.spark.executor.instances: 1
6、移动到服务目录
cp -R amoro /usr/local/service/
7、修改目录权限
cd /usr/local/service/
chown hadoop:hadoop amoro -R
chmod 755 -R amoro
8、服务管理(hadoop用户)
sudo su - hadoop
cd /usr/local/service/amoro/bin
启动服务:sh ams.sh start
停止服务:sh ams.sh stop
重启服务:sh ams.sh restart
三、管理
1、默认关闭自动治理。设置一下参数灰度部分治理表
alter table data_lake_ods.test_table set tblproperties ('self-optimizing.enabled'='true','clean-dangling-delete-files.enabled'='true','clean-orphan-file.enabled'='true','table-expire.enabled' = 'true');
2、开启接口调用
curl -H "Authorization: Basic 替换符" http://127.0.0.1:9092/api/ams/v1/optimize/optimizerGroups/all/optimizers
Authorization生成方式(替换符内容): Base64(账号:密码)
四、文章
1、网易湖仓管理系统 Amoro 进入 Apache 孵化器
Apache Amoro数据湖管理和治理工具部署的更多相关文章
- 对话Apache Hudi VP, 洞悉数据湖的过去现在和未来
Apache Hudi是一个开源数据湖管理平台,用于简化增量数据处理和数据管道开发,该平台可以有效地管理业务需求,例如数据生命周期,并提高数据质量.Hudi的一些常见用例是记录级的插入.更新和删除.简 ...
- Apache Hudi:云数据湖解决方案
1. 引入 开源Apache Hudi项目为Uber等大型组织提供流处理能力,每天可处理数据湖上的数十亿条记录. 随着世界各地的组织采用该技术,Apache开源数据湖项目已经日渐成熟. Apache ...
- 大数据权限管理工具 Apache Ranger 初识
资料参考: Apache Ranger – Introduction http://ranger.apache.org/ 阿里云 Ranger简介 Apache Ranger初识 - 阿里云 大数据权 ...
- 使用Apache Hudi构建大规模、事务性数据湖
一个近期由Hudi PMC & Uber Senior Engineering Manager Nishith Agarwal分享的Talk 关于Nishith Agarwal更详细的介绍,主 ...
- 深度对比Apache CarbonData、Hudi和Open Delta三大开源数据湖方案
摘要:今天我们就来解构数据湖的核心需求,同时深度对比Apache CarbonData.Hudi和Open Delta三大解决方案,帮助用户更好地针对自身场景来做数据湖方案选型. 背景 我们已经看到, ...
- 使用Apache Hudi + Amazon S3 + Amazon EMR + AWS DMS构建数据湖
1. 引入 数据湖使组织能够在更短的时间内利用多个源的数据,而不同角色用户可以以不同的方式协作和分析数据,从而实现更好.更快的决策.Amazon Simple Storage Service(amaz ...
- 数据湖框架选型很纠结?一文了解Apache Hudi核心优势
英文原文:https://hudi.apache.org/blog/hudi-indexing-mechanisms/ Apache Hudi使用索引来定位更删操作所在的文件组.对于Copy-On-W ...
- 基于Apache Hudi构建数据湖的典型应用场景介绍
1. 传统数据湖存在的问题与挑战 传统数据湖解决方案中,常用Hive来构建T+1级别的数据仓库,通过HDFS存储实现海量数据的存储与水平扩容,通过Hive实现元数据的管理以及数据操作的SQL化.虽然能 ...
- Robinhood基于Apache Hudi的下一代数据湖实践
1. 摘要 Robinhood 的使命是使所有人的金融民主化. Robinhood 内部不同级别的持续数据分析和数据驱动决策是实现这一使命的基础. 我们有各种数据源--OLTP 数据库.事件流和各种第 ...
- 基于Apache Hudi在Google云构建数据湖平台
自从计算机出现以来,我们一直在尝试寻找计算机存储一些信息的方法,存储在计算机上的信息(也称为数据)有多种形式,数据变得如此重要,以至于信息现在已成为触手可及的商品.多年来数据以多种方式存储在计算机中, ...
随机推荐
- PHP编译安装之常见问题
正式服的PHP环境,一般都会进行编译安装,汇总一下经常遇到的一些问题 1.Call to undefined function crmeb\utils\imagecreate 解决:需要安装gd库 1 ...
- python语言实现_通过端口转发实现跨网络(多网络之间)通信_science_network
本文使用python语言实现了一个端口转发的程序,该程序可以实现多网络之间的信息通信,当然这里有个前提,那就是多个网络都在一台主机上有可以连通的端口. 之所以有这个编写代码的需求,是因为最近使用的sc ...
- DevEco Studio 实战第一节:字符串拼接与组件构建
DevEco Studio 实战第一节:字符串拼接与组件构建 引言 在现代软件开发中,TypeScript 提供了强类型的优势,而 DevEco Studio 作为华为推出的开发集成环境,提供了便捷的 ...
- CVE-2023-48409 Mali GPU 整数溢出导致堆越界写
CVE-2023-48409 Mali GPU 整数溢出导致堆越界写 https://github.com/0x36/Pixel_GPU_Exploit 漏洞原语:假设分配的大小为 0x3004, ...
- 小程序:支付的时候缺少参数:total_fee,支付失败
最开始的参数是这样写的 param: { "nonce_str": "", "package": "606eb3de10e0602 ...
- aspirate 工具
dotnet tool aspirate https://www.nuget.org/packages/aspirate/0.1.40-preview 作为全局工具安装 dotnet tool ins ...
- Kubernetes 可能是分布式架构的大结局了
前两年在爬虫里折腾的太久了,最近快马加鞭追赶分布式架构潮流. SpringCloud.Dubbo.ServiceComb 刷完,以为分布式架构就是这样了.这批架构可能也就 Java 栈的人会感觉它们特 ...
- jmeter接口测试 -- 连接数据库(MySQL)
三个步骤 一.下载MySQL的连接驱动 1.先查看MySQL的版本 1)服务器上查看:mysql --version 2)在连接工具上查看 2.下载连接驱动,下载地址:https://dev.mysq ...
- Alpine介绍与apk的基本使用
前言 Alpine是一个面向安全的轻量级的Linux发行版,相比与CentOS,ubuntu体积小很多,大约只有5M左右,由于体积小的原因,在很多场景下都会使用它来按需制作一些轻量级镜像,虽然体积小但 ...
- Http2服务调用排坑记
原文作者:陈友行原文链接:https://www.nginx.org.cn/article/detail/89转载来源:NGINX开源社区著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明 ...