LuoguP2680 运输计划
题目地址
题解
二分答案,那么大于答案的路径都需要有一条公共边,maxlen-val>=二分出来的x。val是边权。
考虑树剖,对每条大于答案的路径都+1(线段树里),枚举边,如果(线段树中的)值==大于答案的边数,那么对他们取max。
复杂度\(O((nlognlogn+m)logn)\)(可能不是特别准确因为没写树剖,不过是三个log的没错)
卡常?不,想想树剖的这两个log我们拿来干啥,给路径的链+1。有没有什么复杂度更低的方法?
考虑树上差分。
对每条大于答案的路径差分标记,dfs一遍统计答案,对被标记的次数等于 大于答案的路径条数 的边的边权取max,并对所有路径取max。
check判断max路径-max边是否大于二分出的x即可
复杂度\(O((n+m)logn)\)
#include <bits/stdc++.h>
using namespace std;
#define in(x) (x = read())
inline int read() {
int x = 0, f = 1; char c = getchar();
while(c < '0' || c > '9') (c == '-') && (f = -1), c = getchar();
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
#define N 300010
#define ll long long
int n = read(), m = read();
int head[N], cnt;
int d[N], val[N];
int dep[N], top[N], fa[N], siz[N];
struct edge {
int to, nxt, v;
}e[N<<1];
struct Node {
int x, y, lca;
int len;
}q[N];
void ins(int u, int v, int w) {
e[++cnt] = (edge) {v, head[u], w};
head[u] = cnt;
}
void dfs1(int u) {
siz[u] = 1;
for(int i = head[u]; i; i = e[i].nxt) {
if(e[i].to == fa[u]) continue;
fa[e[i].to] = u;
dep[e[i].to] = dep[u] + 1;
val[e[i].to] = e[i].v;
d[e[i].to] = d[u] + e[i].v;
dfs1(e[i].to);
siz[u] += siz[e[i].to];
}
}
void dfs2(int u, int topf) {
top[u] = topf;
int k = 0;
for(int i = head[u]; i; i = e[i].nxt) {
if(e[i].to == fa[u]) continue;
if(siz[e[i].to] > siz[k]) k = e[i].to;
}
if(!k) return;
dfs2(k, topf);
for(int i = head[u]; i; i = e[i].nxt) {
if(e[i].to == fa[u] || e[i].to == k) continue;
dfs2(e[i].to, e[i].to);
}
}
int lca(int x, int y) {
while(top[x] != top[y]) {
if(dep[top[x]] < dep[top[y]]) swap(x, y);
x = fa[top[x]];
}
if(dep[x] > dep[y]) swap(x, y);
return x;
}
int res = 0, tot = 0, mx = 0;
void dfs(int u) {
for(int i = head[u]; i; i = e[i].nxt) {
if(e[i].to == fa[u]) continue;
dfs(e[i].to);
d[u] += d[e[i].to];
}
if(d[u] == tot) res = max(res, val[u]);
}
bool check(ll x) {
memset(d, 0, sizeof(d));
res = 0; tot = 0; mx = 0;
for(int i = 1; i <= m; ++i) {
if(q[i].len <= x) continue;
d[q[i].x]++; d[q[i].y]++; d[q[i].lca] -= 2;
++tot;
mx = max(q[i].len, mx);
}
dfs(1);
if(mx - res > x) return 0;
return 1;
}
int main(){
for(int i = 1, u, v, w; i < n; ++i) {
in(u), in(v), in(w);
ins(u, v, w), ins(v, u, w);
}
dfs1(1); dfs2(1, 1);
int Mx = 0;
for(int i = 1; i <= m; ++i) {
in(q[i].x); in(q[i].y);
q[i].lca = lca(q[i].x, q[i].y);
q[i].len = d[q[i].x] - d[q[i].lca] + d[q[i].y] - d[q[i].lca];
Mx = max(Mx, q[i].len);
}
int l = 1, r = Mx, ans = Mx;
while(l <= r) {
int mid = (l + r) >> 1;
if(check(mid)) ans = mid, r = mid - 1;
else l = mid + 1;
}
printf("%d\n", ans);
}
LuoguP2680 运输计划的更多相关文章
- luoguP2680 运输计划 题解(二分答案+树上差分)
P2680 运输计划 题目 这道题如果是看的我的树上差分来的,那么肯定一看题目就可以想到树上差分. 至于这是怎么想到的,一步一步来: 1.n有300000,不可能暴力枚举每一条边 2.因为我们要使运 ...
- [luoguP2680] 运输计划(lca + 二分 + 差分)
传送门 暴力做法 50 ~ 60 枚举删边,求最大路径长度的最小值. 其中最大路径长度运用到了lca 我们发现,求lca的过程已经不能优化了,那么看看枚举删边的过程能不能优化. 先把边按照权值排序,然 ...
- bzoj 4326: NOIP2015 运输计划
4326: NOIP2015 运输计划 Time Limit: 30 Sec Memory Limit: 128 MB Description 公元 2044 年,人类进入了宇宙纪元.L 国有 n 个 ...
- noip2015 运输计划
描述 公元 2044 年,人类进入了宇宙纪元.L 国有 nn 个星球,还有 n−1n−1 条双向航道,每条航道建立在两个星球之间,这 n−1n−1 条 航道连通了 L 国的所有星球. 小 P 掌管一家 ...
- 【bzoj4326】[NOIP2015]运输计划
题目描述 公元 2044 年,人类进入了宇宙纪元.L 国有 n 个星球,还有 n−1 条双向航道,每条航道建立在两个星球之间,这 n−1 条航道连通了 L 国的所有星球.小 P 掌管一家物流公司, 该 ...
- [题解]vijos 运输计划
Description 公元 2044 年,人类进入了宇宙纪元.L 国有 n 个星球,还有 n−1 条双向航道,每条航道建立在两个星球之间,这 n−1 条航道连通了 L 国的所有星球.小 P 掌管一家 ...
- NOIP2015 运输计划(bzoj4326)
4326: NOIP2015 运输计划 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 886 Solved: 574[Submit][Status] ...
- UOJ #150 【NOIP2015】 运输计划
题目描述 公元 \(2044\) 年,人类进入了宇宙纪元. \(L\) 国有 \(n\) 个星球,还有 \(n-1\) 条双向航道,每条航道建立在两个星球之间,这 \(n-1\) 条航道连通了 \(L ...
- [bzoj4326][NOIP2015]运输计划
Description 公元2044年,人类进入了宇宙纪元. 国有个星球,还有条双向航道,每条航道建立在两个星球之间,这条航道连通了国的所有星球. 小掌管一家物流公司,该公司有很多个运输计划,每个运输 ...
随机推荐
- META标签之关键词、网页描述设置帮助SEO网站优化(转)
ASP.NET 4.0 Web Forms针对SEO改进措施中有一个是在Page类中加了2个新属性:MetaKeywords 和MetaDescription,它们使得在后台代码类中用编程的手法设 ...
- orb slam2 双目摄像头
主要参考了http://blog.csdn.net/awww797877/article/details/51171099这篇文章,其中需要添加的是:export ROS_PACKAGE_PATH=$ ...
- 20165305 苏振龙《Java程序设计》第八周学习总结
第十二章 •如果想在main()以外独立设计流程,可以撰写类操作java.lang.Runnable接口,流程的进入点是操作在run()方法中. •如果想要加装主线程,就要创建 Thread 实例,要 ...
- Linux基础命令---tail显示文本
tail 显示文本文件尾部的部分内容,默认显示最后10行. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.SUSE.openSUSE.Fedora. 1.语法 ...
- 深入理解Node.js基于事件驱动的回调
回调和异步调用的关系 首先明确一点,回调并非是异步调用,回调是一种解决异步函数执行结果的处理方法.在异步调用,如果我们希望将执行的结果返回并且处理时,可以通过回调的方法解决.为了能够更好的区分回调和异 ...
- GUI常用对象的属性
%常用对象的属性 %.figure %hf=figure; %get(hf); %改变颜色 set Color %set(hf,'Color','w'); %去掉默认的菜单 Menubar %set( ...
- SSM的理解
SSM(Spring+SpringMVC+MyBatis)框架集由Spring.SpringMVC.MyBatis三个开源框架整合而成,常作为数据源较简单的web项目的框架.其中spring是一个轻量 ...
- Mysql初级第二天(wangyun)
SQL 1.LIKE 操作符 SELECT 列名称 FROM 表名称 WHERE 列 LIKE 值('N%'/'%N%'/'%N','N_') SELECT 列名称 FROM 表名称 WHERE 列 ...
- php 版本号 整数化 mysql存储入库 比较大小【版本处理类,提供版本与数字互相转换】
下载地址:https://download.csdn.net/download/a724008158/10659015
- 常用MarkDown标记
1:加粗 两个*号 加粗 2:代码段 三个` 代码段