红黑树( Red-Black Tree ) - 笔记
1. 红黑树属性:根到叶子的路径中,最长路径不大于最短路径的两倍。
2. 红黑树是一个二叉搜索树,并且有
a. 每个节点除了有左、右、父节点的属性外,还有颜色属性,红色或者黑色。
b. ( 根属性 ) 红黑树的根只能是黑色
c. ( 红色属性 ) 红色节点的子节点只能是黑色
d. ( 黑色属性 ) 从给定的节点到其后代叶子节点的每一条路径上,出现的黑色节点数目一样。其中,从某个节点到其后代叶子节点的路径上出现的黑色节点数,被称为该节点的黑高度( black-height )。
3. 红黑树上的查找、输出操作和在二叉搜索树上相同。二叉搜索的插入、删除操作应用到红黑树后,可能打破上面提到的红黑树特性。如果打破了,需要调整结构来恢复红黑树的特性。
4. 插入,每次插入的节点都标示为红色,可能出现两个连续红色节点,以至于打破红色属性。若是打破了,根据叔节点( 父节点的兄弟节点 )的颜色,采用不同的调整方式。
删除,删除的节点如果是红色,不会打破特性;如果是黑色,可能改变其他节点的黑高,打破黑色属性。若是打破了,同样需要分情况,采用不同的调整方式。
插入操作、删除操作的具体实现,尚未读透,有需要再深入理解。
应用场景:Java HashMap 在处理大量 hash 值冲突时,采用红黑树结构存储冲突的元素,提高性能。
红黑树( Red-Black Tree ) - 笔记的更多相关文章
- 笔试算法题(51):简介 - 红黑树(RedBlack Tree)
红黑树(Red-Black Tree) 红黑树是一种BST,但是每个节点上增加一个存储位表示该节点的颜色(R或者B):通过对任何一条从root到leaf的路径上节点着色方式的显示,红黑树确保所有路径的 ...
- C# 链表 二叉树 平衡二叉树 红黑树 B-Tree B+Tree 索引实现
链表=>二叉树=>平衡二叉树=>红黑树=>B-Tree=>B+Tree 1.链表 链表结构是由许多节点构成的,每个节点都包含两部分: 数据部分:保存该节点的实际数据. 地 ...
- 2-3 树/红黑树(red-black tree)
2-3 tree 2-3树节点: null节点,null节点到根节点的距离都是相同的,所以2-3数是平衡树 2叉节点,有两个分树,节点中有一个元素,左树元素更小,右树元素节点更大 3叉节点,有三个子树 ...
- 红黑树(R-B Tree)
R-B Tree简介 R-B Tree,全称是Red-Black Tree,又称为“红黑树”,它一种特殊的二叉查找树.红黑树的每个节点上都有存储位表示节点的颜色,可以是红(Red)或黑(Black). ...
- 树-红黑树(R-B Tree)
红黑树概念 特殊的二叉查找树,每个节点上都有存储位表示节点的颜色是红(Red)或黑(Black).时间复杂度是O(lgn),效率高. 特性: (1)每个节点或者是黑色,或者是红色. (2)根节点是黑色 ...
- 红黑树(RB Tree)
看到一篇很好的文章 文章来源:http://www.360doc.com/content/15/0730/00/14359545_488262776.shtml 红黑树是一种高效的索引树,多于用关联数 ...
- 红黑树(Red-Black tree)
红黑树又称红-黑二叉树,它首先是一颗二叉树,它具体二叉树所有的特性.同时红黑树更是一颗自平衡的排序二叉树.我们知道一颗基本的二叉树他们都需要满足一个基本性质–即树中的任何节点的值大于它的左子节点,且小 ...
- java数据结构——红黑树(R-B Tree)
红黑树相比平衡二叉树(AVL)是一种弱平衡树,且具有以下特性: 1.每个节点非红即黑; 2.根节点是黑的; 3.每个叶节点(叶节点即树尾端NULL指针或NULL节点)都是黑的; 4.如图所示,如果一个 ...
- 红黑树(red-black tree)实现记录
https://github.com/xieqing/red-black-tree A Red-black Tree Implementation In C There are several cho ...
- 吐血整理:二叉树、红黑树、B&B+树超齐全,快速搞定数据结构
前言 没有必要过度关注本文中二叉树的增删改导致的结构改变,规则操作什么的了解一下就好,看不下去就跳过,本文过多的XX树操作图片纯粹是为了作为规则记录,该文章主要目的是增强下个人对各种常用XX树的设计及 ...
随机推荐
- lua中产生 1 - n 之间不重复随机数
local function GetRandomNumList(len) local rsList = {} ,len do table.insert(rsList,i) end local num, ...
- 雷林鹏分享:XML 命名空间
XML 命名空间 XML 命名空间提供避免元素命名冲突的方法. 命名冲突 在 XML 中,元素名称是由开发者定义的,当两个不同的文档使用相同的元素名时,就会发生命名冲突. 这个 XML 携带 HTML ...
- C#使用 System.Net.Mail发送邮件功能
.NET 里包含了很多很丰富的邮件发送与接受的API在 System.Net.Mail命名空间里,使得我们开发发送和接受邮件相关功能变得简单,下面是一个简单发送邮件的功能: private void ...
- (GoRails)使用vue和Vuex管理嵌套的JavaScript评论, 使用组件vue-map-field
嵌套的JavaScript评论 Widget Models 创建类似https://disqus.com/ 的插件 交互插件: Real time comments: Adapts your site ...
- POJ-3107 Godfather 求每个节点连接的联通块数量
dp[n][2],维护儿子的联通块数量和父亲的联通块数量. 第一遍dfs求儿子,第二遍dfs求爸爸. #include<iostream> #include<cstring> ...
- Fiddler抓包配置具体步骤
如何查看手机连接的无线wifi的IP? 打开手机,选择设置->进入设置页面选择WLAN->进入WLAN管理,点击手机已经连接的路由器->点击进入查看,即可看见IP地址 如何查看自己电 ...
- git部署
1. 自动部署原理 先讲实现方法和原理.Git服务和仓库都是在服务器上的,服务器上的Web目录和本地都有完整的代码.Git有个叫hook的机制,可以在代码更新时执行回调(执行一段shell).一般执行 ...
- Leetcode 714 - Node
1. 题目要求 Your are given an array of integers prices, for which the i-th element is the price of a giv ...
- 2015-2016 ACM-ICPC Northeastern European Regional Contest (NEERC 15)C - Cactus Jubilee
题意:给一颗仙人掌,要求移动一条边,不能放在原处,移动之后还是一颗仙人掌的方案数(仙人掌:无向图,每条边只在一个环中),等价于先删除一条边,然后加一条边 题解:对于一颗仙人掌,分成两种边,1:环边:环 ...
- flask-后台布局页面搭建4
1. 搭建后台页面 5.1管理员登录 步骤:1.在admin视图中导入from flask import render_template,redirect,url_for.并写入一下代码. #登录 ...