机器人

时间限制:1000 ms  |  内存限制:65535 KB
难度:4
 
描述

Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远。由于受软硬件设计所限,机器人卡尔只能定点跳远。若机器人站在(X,Y)位置,它可以原地蹦,但只可以在(X,Y),(X,-Y),(-X,Y),(-X,-Y),(Y,X),(Y,-X),(-Y,X),(-Y,-X)八个点跳来跳去。

现在,Dr. Kong想在机器人卡尔身上设计一个计数器,记录它蹦蹦跳跳的数字变化(S,T),即,路过的位置坐标值之和。

你能帮助Dr. Kong判断机器人能否蹦蹦跳跳,拼出数字(S,T)吗?

假设机器人卡尔初始站在(0,0)位置上。

 
输入
第一行: K 表示有多少组测试数据。
接下来有K行,每行:X Y S T

1≤K≤10000 -2*109 <= X , Y, S, T <= 2*109
数据之间有一个空格。

输出
对于每组测试数据,输出一行:Y或者为N,分别表示可以拼出来,不能拼出来
样例输入
3
2 1 3 3
1 1 0 1
1 0 -2 3
样例输出
Y
N
Y
来源
第七届河南省程序设计大赛
  八种变换方式,有四对是呈相反状态的,例如(X,Y)和(-X,-Y)。所以只要对剩下的四个状态走若干次(可以是负数次表示走对立状态)
能达到(S,T)就好了。不妨令剩下的四种状态为(X,Y) (X,-Y) (Y,X) (Y,-X) ,对应的次数为a1,a2,a3,a4,我们有: S=(a1+a2)*X+(a3+a4)*Y
T=(a1-a2)*Y+(a3-a4)*X, 容易看出这两个线性方程可以用exgcd求解,如果S,T 不是gcd(X,Y)的整数倍显然不会成立。算出通解之后
注意到(a1+a2)+(a1-a2)=2*a1  (a3+a4)+(a3-a4)=2*a3 , 枚举一下系数的奇偶情况看是否对应的两项相加都可以是偶数即可。
  (不保证算法正确性,,但是AC了。
 #include<iostream>
#include<cstdio>
using namespace std;
#define LL long long
#define mp make_pair
#define pb push_back
#define inf 0x3f3f3f3f
void exgcd(LL a,LL b,LL &d,LL &x,LL &y){
if(!b){d=a;x=;y=;}
else{exgcd(b,a%b,d,y,x);y-=x*(a/b);}
}
int main(){
int t;
cin>>t;
while(t--){
LL X,Y,S,T,d;
LL A,B,C,D,x,y;
scanf("%lld%lld%lld%lld",&X,&Y,&S,&T);
exgcd(X,Y,d,A,B);
if(!(S%d==&&T%d==)){
puts("N");
}
else{
bool ok=;
LL d1=Y/d,d2=X/d;
for(int i=-;i<=;++i){
for(int j=-;j<=;++j){
LL _A=A*S/d+i*d1,_B=B*S/d-i*d2;
LL _C=A*T/d+j*d1,_D=B*T/d-j*d2; if((_A+_D)%==&&(_B+_C)%==)
ok=; }
}
ok?puts("Y"):puts("N");
}
}
return ;
}
/*
3
2 1 3 3
1 1 0 1
1 0 -2 3
*/

nyoj-1250-exgcd的更多相关文章

  1. NYOJ 1007

    在博客NYOJ 998 中已经写过计算欧拉函数的三种方法,这里不再赘述. 本题也是对欧拉函数的应用的考查,不过考查了另外一个数论基本定理:如何用欧拉函数求小于n且与n互质所有的正整数的和. 记eule ...

  2. NYOJ 998

    这道题是欧拉函数的使用,这里简要介绍下欧拉函数. 欧拉函数定义为:对于正整数n,欧拉函数是指不超过n且与n互质的正整数的个数. 欧拉函数的性质:1.设n = p1a1p2a2p3a3p4a4...pk ...

  3. 扩展欧几里得 exGCD

    Elementary Number Theory - Extended Euclid Algorithm Time Limit : 1 sec, Memory Limit : 65536 KB Jap ...

  4. NOIP2012同余方程[exgcd]

    题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开 输出格式: 输出只有一行,包含一个正整 ...

  5. NYOJ 333

    http://www.cppblog.com/RyanWang/archive/2009/07/19/90512.aspx?opt=admin 欧拉函数 E(x)表示比x小的且与x互质的正整数的个数. ...

  6. NYOJ 99单词拼接(有向图的欧拉(回)路)

    /* NYOJ 99单词拼接: 思路:欧拉回路或者欧拉路的搜索! 注意:是有向图的!不要当成无向图,否则在在搜索之前的判断中因为判断有无导致不必要的搜索,以致TLE! 有向图的欧拉路:abs(In[i ...

  7. exgcd,求乘法逆元

    procedure exgcd(a,b:int64); var t:longint; begin then begin x:=;y:=; exit; end else exgcd(b,a mod b) ...

  8. 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数

    1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...

  9. 【BZOJ-4522】密钥破解 数论 + 模拟 ( Pollard_Rho分解 + Exgcd求逆元 + 快速幂 + 快速乘)

    4522: [Cqoi2016]密钥破解 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 290  Solved: 148[Submit][Status ...

  10. nyoj 10 skiing 搜索+动归

    整整两天了,都打不开网页,是不是我提交的次数太多了? nyoj 10: #include<stdio.h> #include<string.h> ][],b[][]; int ...

随机推荐

  1. 程序设计第二次作业<2>

    我所找到的C++相关课程列表: (2016/1/27)(部分) 1. 慕课网 http://www.imooc.com/learn/342 <c++远征之起航篇> 授课人:james_yu ...

  2. HDU 1241 Oil Deposits(石油储藏)

    HDU 1241 Oil Deposits(石油储藏) 00 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)   Probl ...

  3. Linux 命令之sed

    简介 sed 是一种在线编辑器,它一次处理一行内容.在处理的时候,会先把当前处理的行存储在临时缓冲区,这被称之为 "末世空间", 然后再使用 sed 命令处理缓冲区的内容,处理完成 ...

  4. React Native 炫酷的动画库 实现任何AE动画 lottie-react-native

    lottie-react-native 传送门 1.npm i --save lottie-react-native 2.react-native link lottie-ios 3.react-na ...

  5. (总结)CentOS 6.x使用yum快速安装Apache+PHP+Tomcat(JSP)+MySQL

    (总结)CentOS 6.x使用yum快速安装Apache+PHP+Tomcat(JSP)+MySQL PS:这个是懒人yum快速安装法,用于开发和测试环境很方便,用于没有特殊要求的生产环境也可以.特 ...

  6. 【NPOI】WebAPI-使用NPOI导出Excel

    1.安装nuget包 2.封装方法 public byte[] ExportToByteArray(IEnumerable<string> headerText, IEnumerable& ...

  7. Spring 的@@Autowired 和 @Qualifier注释

    @Autowired spring2.1中允许用户通过@Autowired注解对Bean的属性变量.属性Setter方法以及构造方法进行标注,配合AutowiredAnnotationBeanProc ...

  8. python 安装包

    一般python的包都是.tar.gz结尾的压缩包,据说是linux下面的格式.但也是可以在windows上面安装的,安装过程,1,在 https://pypi.python.org/pypi 这个网 ...

  9. Javascript 常用设计模式

    转载自:https://blog.csdn.net/buptlyz/article/details/52018193 单例模式(模块模式):确保始终只创建一个实例的对象时使用的设计模式. 为什么需要采 ...

  10. display: none; 与 jq show方法之间的联系

    1. 定义四种常用隐藏元素的方式,然后调用  jq 的 show 方法显示,观察各原先隐藏元素的   display   表现,结合 jq 源码,show 方法设置 元素 display  属性值为 ...