nyoj-1250-exgcd
- 描述
-
Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远。由于受软硬件设计所限,机器人卡尔只能定点跳远。若机器人站在(X,Y)位置,它可以原地蹦,但只可以在(X,Y),(X,-Y),(-X,Y),(-X,-Y),(Y,X),(Y,-X),(-Y,X),(-Y,-X)八个点跳来跳去。
现在,Dr. Kong想在机器人卡尔身上设计一个计数器,记录它蹦蹦跳跳的数字变化(S,T),即,路过的位置坐标值之和。
你能帮助Dr. Kong判断机器人能否蹦蹦跳跳,拼出数字(S,T)吗?
假设机器人卡尔初始站在(0,0)位置上。
- 输入
- 第一行: K 表示有多少组测试数据。
接下来有K行,每行:X Y S T1≤K≤10000 -2*109 <= X , Y, S, T <= 2*109
数据之间有一个空格。 - 输出
- 对于每组测试数据,输出一行:Y或者为N,分别表示可以拼出来,不能拼出来
- 样例输入
-
3
2 1 3 3
1 1 0 1
1 0 -2 3 - 样例输出
-
Y
N
Y - 来源
- 第七届河南省程序设计大赛
- 八种变换方式,有四对是呈相反状态的,例如(X,Y)和(-X,-Y)。所以只要对剩下的四个状态走若干次(可以是负数次表示走对立状态)
- 能达到(S,T)就好了。不妨令剩下的四种状态为(X,Y) (X,-Y) (Y,X) (Y,-X) ,对应的次数为a1,a2,a3,a4,我们有: S=(a1+a2)*X+(a3+a4)*Y
- T=(a1-a2)*Y+(a3-a4)*X, 容易看出这两个线性方程可以用exgcd求解,如果S,T 不是gcd(X,Y)的整数倍显然不会成立。算出通解之后
- 注意到(a1+a2)+(a1-a2)=2*a1 (a3+a4)+(a3-a4)=2*a3 , 枚举一下系数的奇偶情况看是否对应的两项相加都可以是偶数即可。
- (不保证算法正确性,,但是AC了。
-
#include<iostream>
#include<cstdio>
using namespace std;
#define LL long long
#define mp make_pair
#define pb push_back
#define inf 0x3f3f3f3f
void exgcd(LL a,LL b,LL &d,LL &x,LL &y){
if(!b){d=a;x=;y=;}
else{exgcd(b,a%b,d,y,x);y-=x*(a/b);}
}
int main(){
int t;
cin>>t;
while(t--){
LL X,Y,S,T,d;
LL A,B,C,D,x,y;
scanf("%lld%lld%lld%lld",&X,&Y,&S,&T);
exgcd(X,Y,d,A,B);
if(!(S%d==&&T%d==)){
puts("N");
}
else{
bool ok=;
LL d1=Y/d,d2=X/d;
for(int i=-;i<=;++i){
for(int j=-;j<=;++j){
LL _A=A*S/d+i*d1,_B=B*S/d-i*d2;
LL _C=A*T/d+j*d1,_D=B*T/d-j*d2; if((_A+_D)%==&&(_B+_C)%==)
ok=; }
}
ok?puts("Y"):puts("N");
}
}
return ;
}
/*
3
2 1 3 3
1 1 0 1
1 0 -2 3
*/
nyoj-1250-exgcd的更多相关文章
- NYOJ 1007
在博客NYOJ 998 中已经写过计算欧拉函数的三种方法,这里不再赘述. 本题也是对欧拉函数的应用的考查,不过考查了另外一个数论基本定理:如何用欧拉函数求小于n且与n互质所有的正整数的和. 记eule ...
- NYOJ 998
这道题是欧拉函数的使用,这里简要介绍下欧拉函数. 欧拉函数定义为:对于正整数n,欧拉函数是指不超过n且与n互质的正整数的个数. 欧拉函数的性质:1.设n = p1a1p2a2p3a3p4a4...pk ...
- 扩展欧几里得 exGCD
Elementary Number Theory - Extended Euclid Algorithm Time Limit : 1 sec, Memory Limit : 65536 KB Jap ...
- NOIP2012同余方程[exgcd]
题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开 输出格式: 输出只有一行,包含一个正整 ...
- NYOJ 333
http://www.cppblog.com/RyanWang/archive/2009/07/19/90512.aspx?opt=admin 欧拉函数 E(x)表示比x小的且与x互质的正整数的个数. ...
- NYOJ 99单词拼接(有向图的欧拉(回)路)
/* NYOJ 99单词拼接: 思路:欧拉回路或者欧拉路的搜索! 注意:是有向图的!不要当成无向图,否则在在搜索之前的判断中因为判断有无导致不必要的搜索,以致TLE! 有向图的欧拉路:abs(In[i ...
- exgcd,求乘法逆元
procedure exgcd(a,b:int64); var t:longint; begin then begin x:=;y:=; exit; end else exgcd(b,a mod b) ...
- 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数
1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...
- 【BZOJ-4522】密钥破解 数论 + 模拟 ( Pollard_Rho分解 + Exgcd求逆元 + 快速幂 + 快速乘)
4522: [Cqoi2016]密钥破解 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 290 Solved: 148[Submit][Status ...
- nyoj 10 skiing 搜索+动归
整整两天了,都打不开网页,是不是我提交的次数太多了? nyoj 10: #include<stdio.h> #include<string.h> ][],b[][]; int ...
随机推荐
- Python实现机器学习算法:感知机
''' 数据集:Mnist 训练集数量:60000 测试集数量:10000 ------------------------------ 运行结果: 正确率:81.72%(二分类) ''' impor ...
- Linux命令2——b
badblocks:检查磁盘设备中损坏的区块 -b:指定磁盘的区块大小,单位:字节 -c:一次检查几个区块 -i:由文件总读取已知的损坏区块,检查时会忽略这些区块 -o:检查的结果写入指定的输出文件. ...
- SAP FI CO模块常用事务代码
...
- React入门实例:组件化+react-redux实现网上商城(1)
项目运行 1.git clone https://github.com/soybeanxiaobi/React_demo_onlineShop 2.cd React_demo_onlineShop(文 ...
- _event_active
EventId 事件ID GUID 对应creature或gameobject表中 guid,正数为生物,负数为物体 ActiveFlag 生物或物体激活时的flag,通常为0 NoticeText ...
- Hadoop 学习路线
大数据实时计算工程师/Hadoop工程师/数据分析师职业路线图 描述 本路线图是一个专门针对大数据实时处理.Hadoop工程师和数据分析师所设计的课程体系介绍,在实时计算方向主要包括了从数据收集框架. ...
- x1c 6th usb-c 接口灯常亮,电源无法充电
症状: 左侧能充电的那个usb-c 红灯始终常亮.拔下电源线也亮着. 系统里电源是始终显示正在充电,即使拔掉外接电源也显示连着外接电源正在充电! ——最吓人的是,用U盘启动进PE,想重装win10,结 ...
- P481tabtenn0
编程环境为Qt Creator 4.0.3 (Community) tabtenn0.h #ifndef TABTENN0_H #define TABTENN0_H #include <stri ...
- Qt的Radio Button(单选按钮)
1 在UI界面中加入控件 2 对QRadioButton控件进行分组 QRadioButton的分组有多重方法,如采用组合框.QWidge等,下面介绍采用QButtonGroup方法来实现分组,好处是 ...
- 第 8 章 容器网络 - 052 - overlay 如何实现跨主机通信?
overlay 如何实现跨主机通信? 在 host2 中运行容器 bbox2: docker run -itd --name bbox2 --network ov_net1 busybox bbox2 ...