【转】基于keras 的神经网络股价预测模型
from matplotlib.dates import DateFormatter, WeekdayLocator, DayLocator, MONDAY,YEARLY
from matplotlib.finance import quotes_historical_yahoo_ohlc, candlestick_ohlc
#import matplotlib
import tushare as ts
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.pylab import date2num
import datetime
import numpy as np
from pandas import DataFrame
from numpy import row_stack,column_stack df=ts.get_hist_data('',start='2016-06-15',end='2017-11-06')
dd=df[['open','high','low','close']] #print(dd.values.shape[0]) dd1=dd .sort_index() dd2=dd1.values.flatten() g1=dd2[::-1] g2=g1[0:120] g3=g2[::-1] gg=DataFrame(g3) gg.T.to_excel('gg.xls') #dd3=pd.DataFrame(dd2)
#dd3.T.to_excel('d8.xls') g=dd2[0:140]
for i in range(dd.values.shape[0]-34): s=dd2[i*4:i*4+140]
g=row_stack((g,s)) fg=DataFrame(g) print(fg)
fg.to_excel('fg.xls') #-*- coding: utf-8 -*-
#建立、训练多层神经网络,并完成模型的检验
#from __future__ import print_function
import pandas as pd inputfile1='fg.xls' #训练数据
testoutputfile = 'test_output_data.xls' #测试数据模型输出文件
data_train = pd.read_excel(inputfile1) #读入训练数据(由日志标记事件是否为洗浴)
data_mean = data_train.mean()
data_std = data_train.std()
data_train1 = (data_train-data_mean)/5 #数据标准化 y_train = data_train1.iloc[:,120:140].as_matrix() #训练样本标签列
x_train = data_train1.iloc[:,0:120].as_matrix() #训练样本特征
#y_test = data_test.iloc[:,4].as_matrix() #测试样本标签列 from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation model = Sequential() #建立模型
model.add(Dense(input_dim = 120, output_dim = 240)) #添加输入层、隐藏层的连接
model.add(Activation('relu')) #以Relu函数为激活函数
model.add(Dense(input_dim = 240, output_dim = 120)) #添加隐藏层、隐藏层的连接
model.add(Activation('relu')) #以Relu函数为激活函数
model.add(Dense(input_dim = 120, output_dim = 120)) #添加隐藏层、隐藏层的连接
model.add(Activation('relu')) #以Relu函数为激活函数
model.add(Dense(input_dim = 120, output_dim = 20)) #添加隐藏层、输出层的连接
model.add(Activation('sigmoid')) #以sigmoid函数为激活函数
#编译模型,损失函数为binary_crossentropy,用adam法求解
model.compile(loss='mean_squared_error', optimizer='adam') model.fit(x_train, y_train, nb_epoch = 100, batch_size = 8) #训练模型
model.save_weights('net.model') #保存模型参数 inputfile2='gg.xls' #预测数据
pre = pd.read_excel(inputfile2) pre_mean = data_mean[0:120]
pre_std = pre.std()
pre1 = (pre-pre_mean)/5 #数据标准化 pre2 = pre1.iloc[:,0:120].as_matrix() #预测样本特征
r = pd.DataFrame(model.predict(pre2))
rt=r*5+data_mean[120:140].as_matrix()
print(rt.round(2)) rt.to_excel('rt.xls') #print(r.values@data_train.iloc[:,116:120].std().values+data_mean[116:120].as_matrix()) a=list(df.index[0:-1]) b=a[0] c= datetime.datetime.strptime(b,'%Y-%m-%d') d = date2num(c) c1=[d+i+1 for i in range(5)]
c2=np.array([c1]) r1=rt.values.flatten()
r2=r1[0:4]
for i in range(4): r3=r1[i*4+4:i*4+8]
r2=row_stack((r2,r3)) c3=column_stack((c2.T,r2))
r5=DataFrame(c3) if len(c3) == 0:
raise SystemExit fig, ax = plt.subplots()
fig.subplots_adjust(bottom=0.2) #ax.xaxis.set_major_locator(mondays)
#ax.xaxis.set_minor_locator(alldays)
#ax.xaxis.set_major_formatter(mondayFormatter)
#ax.xaxis.set_minor_formatter(dayFormatter) #plot_day_summary(ax, quotes, ticksize=3)
candlestick_ohlc(ax, c3, width=0.6, colorup='r', colordown='g') ax.xaxis_date()
ax.autoscale_view()
plt.setp(plt.gca().get_xticklabels(), rotation=45, horizontalalignment='right') ax.grid(True)
#plt.title('000002')
plt.show()
【转】基于keras 的神经网络股价预测模型的更多相关文章
- 基于 Keras 用 LSTM 网络做时间序列预测
目录 基于 Keras 用 LSTM 网络做时间序列预测 问题描述 长短记忆网络 LSTM 网络回归 LSTM 网络回归结合窗口法 基于时间步的 LSTM 网络回归 在批量训练之间保持 LSTM 的记 ...
- 基于双向BiLstm神经网络的中文分词详解及源码
基于双向BiLstm神经网络的中文分词详解及源码 基于双向BiLstm神经网络的中文分词详解及源码 1 标注序列 2 训练网络 3 Viterbi算法求解最优路径 4 keras代码讲解 最后 源代码 ...
- 基于 Keras 用深度学习预测时间序列
目录 基于 Keras 用深度学习预测时间序列 问题描述 多层感知机回归 多层感知机回归结合"窗口法" 改进方向 扩展阅读 本文主要参考了 Jason Brownlee 的博文 T ...
- 基于Keras 的VGG16神经网络模型的Mnist数据集识别并使用GPU加速
这段话放在前面:之前一种用的Pytorch,用着还挺爽,感觉挺方便的,但是在最近文献的时候,很多实验都是基于Google 的Keras的,所以抽空学了下Keras,学了之后才发现Keras相比Pyto ...
- 解析基于keras深度学习框架下yolov3的算法
一.前言 由于前一段时间以及实现了基于keras深度学习框架下yolov3的算法,本来想趁着余热将自己的心得体会进行总结,但由于前几天有点事就没有完成计划,现在趁午休时间整理一下. 二.Keras框架 ...
- keras搭建神经网络快速入门笔记
之前学习了tensorflow2.0的小伙伴可能会遇到一些问题,就是在读论文中的代码和一些实战项目往往使用keras+tensorflow1.0搭建, 所以本次和大家一起分享keras如何搭建神经网络 ...
- [AI开发]centOS7.5上基于keras/tensorflow深度学习环境搭建
这篇文章详细介绍在centOS7.5上搭建基于keras/tensorflow的深度学习环境,该环境可用于实际生产.本人现在非常熟练linux(Ubuntu/centOS/openSUSE).wind ...
- [深度应用]·首届中国心电智能大赛初赛开源Baseline(基于Keras val_acc: 0.88)
[深度应用]·首届中国心电智能大赛初赛开源Baseline(基于Keras val_acc: 0.88) 个人主页--> https://xiaosongshine.github.io/ 项目g ...
- CIKM 18 | 蚂蚁金服论文:基于异构图神经网络的恶意账户识别方法
小蚂蚁说: ACM CIKM 2018 全称是 The 27th ACM International Conference on Information and Knowledge Managemen ...
随机推荐
- Python库,让你相见恨晚的第三方库
环境管理 管理 Python 版本和环境的工具 p – 非常简单的交互式 python 版本管理工具.pyenv – 简单的 Python 版本管理工具.Vex – 可以在虚拟环境中执行命令.virt ...
- express-session 产生的警告问题
调用express的express-session模块引发的警告问题 解决办法 调用的时候加上 resave:true, saveUninitialized:true eg: app.use(sess ...
- Centos7 使用Docker搭建Oracle测试环境
1.更新yum yum update 2.安装Docker yum install docker 安装完成后查看Docker的版本: docker version 查看Docker的信息: docke ...
- 2017ICPC南宁赛区网络赛 Minimum Distance in a Star Graph (bfs)
In this problem, we will define a graph called star graph, and the question is to find the minimum d ...
- [JetBrains注册] 利用教育邮箱注册JetBrains产品(pycharm、idea等)的方法
我们在使用JetBrains的一些产品时,大多使用网上的一些key去注册或者pojie的,但是由于提供这些key的服务器并不能保证稳定可用,所以可能一段时间我们使用的ide又需要重新pojie. 这里 ...
- Vue 之 element-ui upload组件的文件类型
在使用element-ui的upload上传组件的时候,有时候会遇到 控制上传文件类型 的需求,只需要配置accept属性为允许的类型即可,比如: <el-upload class=" ...
- SQL注入之Sqli-labs系列第九关和第十关(基于时间盲注的注入)
开始挑战第九关(Blind- Time based- Single Quotes- String)和第十关( Blind- Time based- Double Quotes- String) gog ...
- python 模块基础 和常用的模块
模块的定义 一个模块就是以.py结尾的python 文件,用来从逻辑上组织python代码.注意,模块名和变量名一样开头不能用数字,可以是双下划线和字母. 为什么要用模块? 将一些复杂的需要重复使用的 ...
- phpstorm使用zen coding 快速编辑补全html/css代码
百科定义: 使用仿CSS选择器的语法来快速开发HTML和CSS ——由Sergey Chikuyonok开发. Zen Coding由两个核心组件组成:一个缩写扩展器(缩写为像CSS一样的选择器)和上 ...
- 查询表Or列的注释信息
需求:开发人员需要DBA支持,查询表的注释说明,用于明确表的用途. 1.测试 session 1 创建测试表SQL> create table a_emp as select * from sc ...