Computer networking requires that the computers in the network be linked.
This problem considers a \linear" network in which the computers are chained together so that each
is connected to exactly two others except for the two computers on the ends of the chain which are
connected to only one other computer. A picture is shown below. Here the computers are the black
dots and their locations in the network are identi ed by planar coordinates (relative to a coordinate
system not shown in the picture).
Distances between linked computers in the network are shown in feet.
For various reasons it is desirable to minimize the length of cable used.
Your problem is to determine how the computers should be connected into such a chain to minimize
the total amount of cable needed. In the installation being constructed, the cabling will run beneath
the oor, so the amount of cable used to join 2 adjacent computers on the network will be equal to
the distance between the computers plus 16 additional feet of cable to connect from the oor to the
computers and provide some slack for ease of installation.
The picture below shows the optimal way of connecting the computers shown above, and the total
length of cable required for this con guration is (4+16)+ (5+16) + (5.83+16) + (11.18+16) = 90.01
feet.
Input
The input le will consist of a series of data sets. Each data set will begin with a line consisting of a
single number indicating the number of computers in a network. Each network has at least 2 and at
most 8 computers. A value of 0 for the number of computers indicates the end of input.
After the initial line in a data set specifying the number of computers in a network, each additional
line in the data set will give the coordinates of a computer in the network. These coordinates will be
integers in the range 0 to 150. No two computers are at identical locations and each computer will be
listed once.
Output
The output for each network should include a line which tells the number of the network (as determined
by its position in the input data), and one line for each length of cable to be cut to connect each adjacent
pair of computers in the network. The nal line should be a sentence indicating the total amount of
cable used.
In listing the lengths of cable to be cut, traverse the network from one end to the
other
. (It makes no difference at which end you start.) Use a format similar to the one shown in the
sample output, with a line of asterisks separating output for different networks and with distances in
feet printed to 2 decimal places.
SampleInput
6
5 19
55 28
38 101
28 62
111 84
43 116
5
11 27
84 99
142 81
88 30
95 38
3
132 73
49 86
72 111
0
SampleOutput
**********************************************************
Network #1
Cable requirement to connect (5,19) to (55,28) is 66.80 feet.
Cable requirement to connect (55,28) to (28,62) is 59.42 feet.
Cable requirement to connect (28,62) to (38,101) is 56.26 feet.
Cable requirement to connect (38,101) to (43,116) is 31.81 feet.
Cable requirement to connect (43,116) to (111,84) is 91.15 feet.
Number of feet of cable required is 305.45.
**********************************************************
Network #2
Cable requirement to connect (11,27) to (88,30) is 93.06 feet.
Cable requirement to connect (88,30) to (95,38) is 26.63 feet.
Cable requirement to connect (95,38) to (84,99) is 77.98 feet.
Cable requirement to connect (84,99) to (142,81) is 76.73 feet.
Number of feet of cable required is 274.40.
**********************************************************
Network #3
Cable requirement to connect (132,73) to (72,111) is 87.02 feet.
Cable requirement to connect (72,111) to (49,86) is 49.97 feet.
Number of feet of cable required is 136.99.

题目大意:给定一些电脑的笛卡尔平面直角坐标系坐标,求将这些电脑连成一条链的最小总距离(单位:ft),由于连线问题,每两台电脑之间的连接距离要多16 ft。

思路:全枚举暴搜。

可行性剪枝:当早已枚举完了n台电脑时,剪枝。

最优化剪枝:若当前的累计距离总和超过了已求出的最小距离总和,意味着再搜索也无法得出更优解,则剪枝。

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
int ans[8],dans[8],n;
bool vis[8];
struct node{int x,y;}a[8];
double dis[8][8],tot;
inline double cal(int i,int j)
{
return sqrt((a[i].x-a[j].x)*(a[i].x-a[j].x)+(a[i].y-a[j].y)*(a[i].y-a[j].y));
}
void dfs(int cur,double sum)
{
if(sum>=tot)return;
if(cur>=n){
tot=sum;
for(int i=0;i<n;i++)
ans[i]=dans[i];
}
for(int i=0;i<n;i++)
if(!vis[i]){
vis[i]=1;
dans[cur]=i;
double tmp=cur?dis[dans[cur-1]][i]:0;
dfs(cur+1,sum+tmp);
vis[i]=0;
}
}
void Init()
{
for(int i=0;i<n;i++)
scanf("%d%d",&a[i].x,&a[i].y);
for(int i=0;i<n;i++)
for(int j=i;j<n;j++)
dis[i][j]=dis[j][i]=cal(i,j)+16;
tot=(double)0x3f3f3f3f;
}
void out(int &T)
{
puts("**********************************************************");
printf("Network #%d\n",++T);
for(int i=1;i<n;i++){
int p=ans[i-1],q=ans[i];
printf("Cable requirement to connect (%d,%d) to (%d,%d) is %.2lf feet.\n",a[p].x,a[p].y,a[q].x,a[q].y,dis[p][q]);
}
printf("Number of feet of cable required is %.2lf.\n",tot);
}
int main()
{
int T=0;
while(scanf("%d",&n)&&n){
Init();
dfs(0,0);
out(T);
}
return 0;
}

//此程序是首次全程在ubuntu(of linux)环境下编写的,以示纪念;

uva216 Getting in Line的更多相关文章

  1. 备战NOIP每周写题记录(一)···不间断更新

    ※Recorded By ksq2013 //其实这段时间写的题远远大于这篇博文中的内容,只不过那些数以百记的基础题目实在没必要写在blog上; ※week one 2016.7.18 Monday ...

  2. ILJMALL project过程中遇到Fragment嵌套问题:IllegalArgumentException: Binary XML file line #23: Duplicate id

    出现场景:当点击"分类"再返回"首页"时,发生error退出   BUG描述:Caused by: java.lang.IllegalArgumentExcep ...

  3. Error on line -1 of document : Premature end of file. Nested exception: Premature end of file.

    启动tomcat, 出现, ( 之前都是好好的... ) [lk ] ERROR [08-12 15:10:02] [main] org.springframework.web.context.Con ...

  4. 关于xml加载提示: Error on line 1 of document : 前言中不允许有内容

    我是在java中做的相关测试, 首先粘贴下报错: 读取xml配置文件:xmls\property.xml org.dom4j.DocumentException: Error on line 1 of ...

  5. Eclipse "Unable to install breakpoint due to missing line number attributes..."

    Eclipse 无法找到 该 断点,原因是编译时,字节码改变了,导致eclipse无法读取对应的行了 1.ANT编译的class Eclipse不认,因为eclipse也会编译class.怎么让它们统 ...

  6. Linix登录报"/etc/profile: line 11: syntax error near unexpected token `$'{\r''"

    同事反馈他在一测试服务器(CentOS Linux release 7.2.1511)上修改了/etc/profile文件后,使用source命令不能生效,让我帮忙看看,结果使用SecureCRT一登 ...

  7. [LeetCode] Line Reflection 直线对称

    Given n points on a 2D plane, find if there is such a line parallel to y-axis that reflect the given ...

  8. [LeetCode] Tenth Line 第十行

    How would you print just the 10th line of a file? For example, assume that file.txt has the followin ...

  9. [LeetCode] Max Points on a Line 共线点个数

    Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. ...

随机推荐

  1. SharePoint 2010 网站备份还原简单介绍

    今天尝试了SharePoint2010网站的备份和还原,从网上搜一些文档看看,然后自己试试,感觉和2007的操作没什么太大的区别,跟大家分享下自己尝试的命令行方式和数据库的方式,2007自己常用的也是 ...

  2. CalloutManager

    在SharePoint中很多弹出的提示样式挺好看,不仅想整一个耍耍.如下图: 老办法,看一下html中的class名字得知为:Callout 谷歌之---官方文档:http://msdn.micros ...

  3. IOS开发札记

    //遍历所有的子控件,并打印其Frame +(NSString )searchAllSubviews:(UIView )superview { NSMutableString xml = [NSMut ...

  4. Java笔试题(一)

    一. 选择题(共50题,每题2分,共100分.多选题选不全或选错都不得分.) 7. 以下说法错误的是()/*这个我感觉是全对,谁知道哪个错啦,讲解下,非常感谢*/A) super.方法()可以调用父类 ...

  5. java你可能不知道的事(2)--堆和栈

    在java语言的学习和使用当中你可能已经了解或者知道堆和栈,但是你可能没有完全的理解它们.今天我们就一起来学习堆.栈的特点以及它们的区别.认识了这个之后,你可能对java有更深的理解. Java堆内存 ...

  6. 用Reveal分析第三方App的UI

    文章出自:听云博客 Reveal简介: 这是个神奇的工具,它能常透彻地分析个App的UI结构. 这个工具包括两部分,部分是在PC上运行的一个独立应用,即Reveal.app,另一部分代码在你要分析的某 ...

  7. vs合并压缩css,js插件——Bundler & Minifier

    之前做了一个大转盘的抽奖活动,因为比较火,部分用户反馈看不到页面的情况,我怀疑js加载请求过慢导致,所以今天针对之前的一个页面进行调试优化. 首先想到的是对页面的js和css进行压缩优化,百度了下vs ...

  8. C#中方法的参数的四种类型

    C#中方法的参数有四种类型:       1. 值参数类型  (不加任何修饰符,是默认的类型)       2. 引用型参数  (以ref 修饰符声明)       3. 输出型参数  (以out 修 ...

  9. json对象转为字符串,当做参数传递时加密解密

    [son对象  字符串 互相转行] 比如我有两个变量,我要将a转换成字符串,将b转换成JSON对象: var a={"name":"tom","sex ...

  10. 一个简单的Java web服务器实现

    前言 一个简单的Java web服务器实现,比较简单,基于java.net.Socket和java.net.ServerSocket实现: 程序执行步骤 创建一个ServerSocket对象: 调用S ...