Computer networking requires that the computers in the network be linked.
This problem considers a \linear" network in which the computers are chained together so that each
is connected to exactly two others except for the two computers on the ends of the chain which are
connected to only one other computer. A picture is shown below. Here the computers are the black
dots and their locations in the network are identi ed by planar coordinates (relative to a coordinate
system not shown in the picture).
Distances between linked computers in the network are shown in feet.
For various reasons it is desirable to minimize the length of cable used.
Your problem is to determine how the computers should be connected into such a chain to minimize
the total amount of cable needed. In the installation being constructed, the cabling will run beneath
the oor, so the amount of cable used to join 2 adjacent computers on the network will be equal to
the distance between the computers plus 16 additional feet of cable to connect from the oor to the
computers and provide some slack for ease of installation.
The picture below shows the optimal way of connecting the computers shown above, and the total
length of cable required for this con guration is (4+16)+ (5+16) + (5.83+16) + (11.18+16) = 90.01
feet.
Input
The input le will consist of a series of data sets. Each data set will begin with a line consisting of a
single number indicating the number of computers in a network. Each network has at least 2 and at
most 8 computers. A value of 0 for the number of computers indicates the end of input.
After the initial line in a data set specifying the number of computers in a network, each additional
line in the data set will give the coordinates of a computer in the network. These coordinates will be
integers in the range 0 to 150. No two computers are at identical locations and each computer will be
listed once.
Output
The output for each network should include a line which tells the number of the network (as determined
by its position in the input data), and one line for each length of cable to be cut to connect each adjacent
pair of computers in the network. The nal line should be a sentence indicating the total amount of
cable used.
In listing the lengths of cable to be cut, traverse the network from one end to the
other
. (It makes no difference at which end you start.) Use a format similar to the one shown in the
sample output, with a line of asterisks separating output for different networks and with distances in
feet printed to 2 decimal places.
SampleInput
6
5 19
55 28
38 101
28 62
111 84
43 116
5
11 27
84 99
142 81
88 30
95 38
3
132 73
49 86
72 111
0
SampleOutput
**********************************************************
Network #1
Cable requirement to connect (5,19) to (55,28) is 66.80 feet.
Cable requirement to connect (55,28) to (28,62) is 59.42 feet.
Cable requirement to connect (28,62) to (38,101) is 56.26 feet.
Cable requirement to connect (38,101) to (43,116) is 31.81 feet.
Cable requirement to connect (43,116) to (111,84) is 91.15 feet.
Number of feet of cable required is 305.45.
**********************************************************
Network #2
Cable requirement to connect (11,27) to (88,30) is 93.06 feet.
Cable requirement to connect (88,30) to (95,38) is 26.63 feet.
Cable requirement to connect (95,38) to (84,99) is 77.98 feet.
Cable requirement to connect (84,99) to (142,81) is 76.73 feet.
Number of feet of cable required is 274.40.
**********************************************************
Network #3
Cable requirement to connect (132,73) to (72,111) is 87.02 feet.
Cable requirement to connect (72,111) to (49,86) is 49.97 feet.
Number of feet of cable required is 136.99.

题目大意:给定一些电脑的笛卡尔平面直角坐标系坐标,求将这些电脑连成一条链的最小总距离(单位:ft),由于连线问题,每两台电脑之间的连接距离要多16 ft。

思路:全枚举暴搜。

可行性剪枝:当早已枚举完了n台电脑时,剪枝。

最优化剪枝:若当前的累计距离总和超过了已求出的最小距离总和,意味着再搜索也无法得出更优解,则剪枝。

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
int ans[8],dans[8],n;
bool vis[8];
struct node{int x,y;}a[8];
double dis[8][8],tot;
inline double cal(int i,int j)
{
return sqrt((a[i].x-a[j].x)*(a[i].x-a[j].x)+(a[i].y-a[j].y)*(a[i].y-a[j].y));
}
void dfs(int cur,double sum)
{
if(sum>=tot)return;
if(cur>=n){
tot=sum;
for(int i=0;i<n;i++)
ans[i]=dans[i];
}
for(int i=0;i<n;i++)
if(!vis[i]){
vis[i]=1;
dans[cur]=i;
double tmp=cur?dis[dans[cur-1]][i]:0;
dfs(cur+1,sum+tmp);
vis[i]=0;
}
}
void Init()
{
for(int i=0;i<n;i++)
scanf("%d%d",&a[i].x,&a[i].y);
for(int i=0;i<n;i++)
for(int j=i;j<n;j++)
dis[i][j]=dis[j][i]=cal(i,j)+16;
tot=(double)0x3f3f3f3f;
}
void out(int &T)
{
puts("**********************************************************");
printf("Network #%d\n",++T);
for(int i=1;i<n;i++){
int p=ans[i-1],q=ans[i];
printf("Cable requirement to connect (%d,%d) to (%d,%d) is %.2lf feet.\n",a[p].x,a[p].y,a[q].x,a[q].y,dis[p][q]);
}
printf("Number of feet of cable required is %.2lf.\n",tot);
}
int main()
{
int T=0;
while(scanf("%d",&n)&&n){
Init();
dfs(0,0);
out(T);
}
return 0;
}

//此程序是首次全程在ubuntu(of linux)环境下编写的,以示纪念;

uva216 Getting in Line的更多相关文章

  1. 备战NOIP每周写题记录(一)···不间断更新

    ※Recorded By ksq2013 //其实这段时间写的题远远大于这篇博文中的内容,只不过那些数以百记的基础题目实在没必要写在blog上; ※week one 2016.7.18 Monday ...

  2. ILJMALL project过程中遇到Fragment嵌套问题:IllegalArgumentException: Binary XML file line #23: Duplicate id

    出现场景:当点击"分类"再返回"首页"时,发生error退出   BUG描述:Caused by: java.lang.IllegalArgumentExcep ...

  3. Error on line -1 of document : Premature end of file. Nested exception: Premature end of file.

    启动tomcat, 出现, ( 之前都是好好的... ) [lk ] ERROR [08-12 15:10:02] [main] org.springframework.web.context.Con ...

  4. 关于xml加载提示: Error on line 1 of document : 前言中不允许有内容

    我是在java中做的相关测试, 首先粘贴下报错: 读取xml配置文件:xmls\property.xml org.dom4j.DocumentException: Error on line 1 of ...

  5. Eclipse "Unable to install breakpoint due to missing line number attributes..."

    Eclipse 无法找到 该 断点,原因是编译时,字节码改变了,导致eclipse无法读取对应的行了 1.ANT编译的class Eclipse不认,因为eclipse也会编译class.怎么让它们统 ...

  6. Linix登录报"/etc/profile: line 11: syntax error near unexpected token `$'{\r''"

    同事反馈他在一测试服务器(CentOS Linux release 7.2.1511)上修改了/etc/profile文件后,使用source命令不能生效,让我帮忙看看,结果使用SecureCRT一登 ...

  7. [LeetCode] Line Reflection 直线对称

    Given n points on a 2D plane, find if there is such a line parallel to y-axis that reflect the given ...

  8. [LeetCode] Tenth Line 第十行

    How would you print just the 10th line of a file? For example, assume that file.txt has the followin ...

  9. [LeetCode] Max Points on a Line 共线点个数

    Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. ...

随机推荐

  1. 服务 {49A27252-A326-4EF1-B698-6EBC7068833C} 的计时器作业 id {573BE459-DF82-481C-84BD-CA14D287450B} 配置刷新的上一个实例仍在运行,因此将跳过当前的实例。请考虑增加作业之间的时间间隔。

    在SharePoint2007的错误日志中发现大量如下错误: 07/02/2013 16:17:25.99     OWSTIMER.EXE (0x0958)     0x097C    Window ...

  2. Android 视频播放器切换到下个视频时残留上个视频画面的解决办法

    最近在做一个Android视频播放器,遇到一个问题:切换到下一个视频时,中间会停留上一个视频的残存画面.   这是怎么回事?   我在网上找了很多资料,终于找到了原因:我是用自定义一个surfacev ...

  3. 搭建一个完整的Android工程(一)Dagger2

    写在前面 现在越来越多的使用到了开源项目,但是仅限于使用,却不了解,更谈不上深入.也是因为越来越多的开源项目,平时工作中遇到问题也是第一时间寻找对应的开源项目,少了许多独立的思考.现在虽然能很轻松的完 ...

  4. Android Small插件化框架源码分析

    Android Small插件化框架源码分析 目录 概述 Small如何使用 插件加载流程 待改进的地方 一.概述 Small是一个写得非常简洁的插件化框架,工程源码位置:https://github ...

  5. Objective—C基础学习总结

        1. (1)面向过程:一种以事件为中心的编程思想         (2)面向对象:一种以对象为中心的编程思想        2.get和set是用来访问和修改对象里的属性值           ...

  6. Android Build Error(1)

    Type 1 —— Build Path Problem : **.jar包文件缺失 1.在Android项目根目录下新建一个libs文件夹: 2.把你需要的导入的第三方Jar包复制进这个目录: 3. ...

  7. Java内存泄露简述

    Java的一个最显著的优势是内存管理.你只需要简单的创建对象而不需要负责释放空间,因为Java的垃圾回收器会负责内存的回收.然而,情况并不是这样简单,内存泄露还是经常会在Java应用程序中出现. 本篇 ...

  8. WEB核心IOC篇

    ioc概念的理解:(不是技术是一种设计思想) IOC (控制反转)     IoC(Inverse of Control)的字面意思是 控制反转 ,它包括两个内容:     其一是控制 (控制对象的实 ...

  9. Java Gradle入门指南之依赖管理(添加依赖、仓库、版本冲突)

        开发任何软件,如何管理依赖是一道绕不过去的坎,软件开发过程中,我们往往会使用这样那样的第三方库,这个时候,一个好的依赖管理就显得尤为重要了.作为一个自动构建工作,Gradle对依赖管理有着很好 ...

  10. 【转载】CentOS 6.4下Squid代理服务器的安装与配置

    一.简介 代理服务器英文全称是Proxy Server,其功能就是代理网络用户去取得网络信息. Squid是一个缓存Internet 数据的软件,其接收用户的下载申请,并自动处理所下载的数据.当一个用 ...