Computer networking requires that the computers in the network be linked.
This problem considers a \linear" network in which the computers are chained together so that each
is connected to exactly two others except for the two computers on the ends of the chain which are
connected to only one other computer. A picture is shown below. Here the computers are the black
dots and their locations in the network are identi ed by planar coordinates (relative to a coordinate
system not shown in the picture).
Distances between linked computers in the network are shown in feet.
For various reasons it is desirable to minimize the length of cable used.
Your problem is to determine how the computers should be connected into such a chain to minimize
the total amount of cable needed. In the installation being constructed, the cabling will run beneath
the oor, so the amount of cable used to join 2 adjacent computers on the network will be equal to
the distance between the computers plus 16 additional feet of cable to connect from the oor to the
computers and provide some slack for ease of installation.
The picture below shows the optimal way of connecting the computers shown above, and the total
length of cable required for this con guration is (4+16)+ (5+16) + (5.83+16) + (11.18+16) = 90.01
feet.
Input
The input le will consist of a series of data sets. Each data set will begin with a line consisting of a
single number indicating the number of computers in a network. Each network has at least 2 and at
most 8 computers. A value of 0 for the number of computers indicates the end of input.
After the initial line in a data set specifying the number of computers in a network, each additional
line in the data set will give the coordinates of a computer in the network. These coordinates will be
integers in the range 0 to 150. No two computers are at identical locations and each computer will be
listed once.
Output
The output for each network should include a line which tells the number of the network (as determined
by its position in the input data), and one line for each length of cable to be cut to connect each adjacent
pair of computers in the network. The nal line should be a sentence indicating the total amount of
cable used.
In listing the lengths of cable to be cut, traverse the network from one end to the
other
. (It makes no difference at which end you start.) Use a format similar to the one shown in the
sample output, with a line of asterisks separating output for different networks and with distances in
feet printed to 2 decimal places.
SampleInput
6
5 19
55 28
38 101
28 62
111 84
43 116
5
11 27
84 99
142 81
88 30
95 38
3
132 73
49 86
72 111
0
SampleOutput
**********************************************************
Network #1
Cable requirement to connect (5,19) to (55,28) is 66.80 feet.
Cable requirement to connect (55,28) to (28,62) is 59.42 feet.
Cable requirement to connect (28,62) to (38,101) is 56.26 feet.
Cable requirement to connect (38,101) to (43,116) is 31.81 feet.
Cable requirement to connect (43,116) to (111,84) is 91.15 feet.
Number of feet of cable required is 305.45.
**********************************************************
Network #2
Cable requirement to connect (11,27) to (88,30) is 93.06 feet.
Cable requirement to connect (88,30) to (95,38) is 26.63 feet.
Cable requirement to connect (95,38) to (84,99) is 77.98 feet.
Cable requirement to connect (84,99) to (142,81) is 76.73 feet.
Number of feet of cable required is 274.40.
**********************************************************
Network #3
Cable requirement to connect (132,73) to (72,111) is 87.02 feet.
Cable requirement to connect (72,111) to (49,86) is 49.97 feet.
Number of feet of cable required is 136.99.

题目大意:给定一些电脑的笛卡尔平面直角坐标系坐标,求将这些电脑连成一条链的最小总距离(单位:ft),由于连线问题,每两台电脑之间的连接距离要多16 ft。

思路:全枚举暴搜。

可行性剪枝:当早已枚举完了n台电脑时,剪枝。

最优化剪枝:若当前的累计距离总和超过了已求出的最小距离总和,意味着再搜索也无法得出更优解,则剪枝。

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
int ans[8],dans[8],n;
bool vis[8];
struct node{int x,y;}a[8];
double dis[8][8],tot;
inline double cal(int i,int j)
{
return sqrt((a[i].x-a[j].x)*(a[i].x-a[j].x)+(a[i].y-a[j].y)*(a[i].y-a[j].y));
}
void dfs(int cur,double sum)
{
if(sum>=tot)return;
if(cur>=n){
tot=sum;
for(int i=0;i<n;i++)
ans[i]=dans[i];
}
for(int i=0;i<n;i++)
if(!vis[i]){
vis[i]=1;
dans[cur]=i;
double tmp=cur?dis[dans[cur-1]][i]:0;
dfs(cur+1,sum+tmp);
vis[i]=0;
}
}
void Init()
{
for(int i=0;i<n;i++)
scanf("%d%d",&a[i].x,&a[i].y);
for(int i=0;i<n;i++)
for(int j=i;j<n;j++)
dis[i][j]=dis[j][i]=cal(i,j)+16;
tot=(double)0x3f3f3f3f;
}
void out(int &T)
{
puts("**********************************************************");
printf("Network #%d\n",++T);
for(int i=1;i<n;i++){
int p=ans[i-1],q=ans[i];
printf("Cable requirement to connect (%d,%d) to (%d,%d) is %.2lf feet.\n",a[p].x,a[p].y,a[q].x,a[q].y,dis[p][q]);
}
printf("Number of feet of cable required is %.2lf.\n",tot);
}
int main()
{
int T=0;
while(scanf("%d",&n)&&n){
Init();
dfs(0,0);
out(T);
}
return 0;
}

//此程序是首次全程在ubuntu(of linux)环境下编写的,以示纪念;

uva216 Getting in Line的更多相关文章

  1. 备战NOIP每周写题记录(一)···不间断更新

    ※Recorded By ksq2013 //其实这段时间写的题远远大于这篇博文中的内容,只不过那些数以百记的基础题目实在没必要写在blog上; ※week one 2016.7.18 Monday ...

  2. ILJMALL project过程中遇到Fragment嵌套问题:IllegalArgumentException: Binary XML file line #23: Duplicate id

    出现场景:当点击"分类"再返回"首页"时,发生error退出   BUG描述:Caused by: java.lang.IllegalArgumentExcep ...

  3. Error on line -1 of document : Premature end of file. Nested exception: Premature end of file.

    启动tomcat, 出现, ( 之前都是好好的... ) [lk ] ERROR [08-12 15:10:02] [main] org.springframework.web.context.Con ...

  4. 关于xml加载提示: Error on line 1 of document : 前言中不允许有内容

    我是在java中做的相关测试, 首先粘贴下报错: 读取xml配置文件:xmls\property.xml org.dom4j.DocumentException: Error on line 1 of ...

  5. Eclipse "Unable to install breakpoint due to missing line number attributes..."

    Eclipse 无法找到 该 断点,原因是编译时,字节码改变了,导致eclipse无法读取对应的行了 1.ANT编译的class Eclipse不认,因为eclipse也会编译class.怎么让它们统 ...

  6. Linix登录报"/etc/profile: line 11: syntax error near unexpected token `$'{\r''"

    同事反馈他在一测试服务器(CentOS Linux release 7.2.1511)上修改了/etc/profile文件后,使用source命令不能生效,让我帮忙看看,结果使用SecureCRT一登 ...

  7. [LeetCode] Line Reflection 直线对称

    Given n points on a 2D plane, find if there is such a line parallel to y-axis that reflect the given ...

  8. [LeetCode] Tenth Line 第十行

    How would you print just the 10th line of a file? For example, assume that file.txt has the followin ...

  9. [LeetCode] Max Points on a Line 共线点个数

    Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. ...

随机推荐

  1. 【Leafletjs】2.添加marker到地图

    本人建了一个Leaflet交流群:Leaflet&WebGIS  331437754 接着上篇我们在地图中添加一个marker,非常简单只需添加如下代码即可: var marker = L.m ...

  2. Servlet基础(一) Servlet简介 关键API介绍及结合源码讲解

    Servlet基础(一) Servlet基础和关键的API介绍 Servlet简介 Java Servlet是和平台无关的服务器端组件,它运行在Servlet容器中. Servlet容器负责Servl ...

  3. 怎么让一个项目里swift与OC可以兼容混合开发?

    在苹果推出了swift语言之后,很多人担心OC很快会被取代,但是苹果方面表示2年内不会摒弃OC.但现在也快了啊.有的开发团队已经开始基于swift开发,但是有很多旧的框架还没来得及用swift写出来, ...

  4. phonegap + Framework7 之 ios 推送跳转测试

    先说说项目情况:使用phonegap创建的ios项目,然后在使用html + css开发网页中又使用了一个框架Framework7(Framework7是一个构建仿原生ios和android应用的框架 ...

  5. 极其简单的搭建eclipse的android开发环境

    这篇博客是关于如何搭建eclipse的android开发环境, 与网上的其他博客不同,我的方法比他们简单的多,所 以推荐给大家. 搭建eclipse的android开发环境步骤: 1.配置JDK(Ja ...

  6. 【代码笔记】iOS-GTMBase64

    一,工程文件. 二,代码. - (void)viewDidLoad { [super viewDidLoad]; // Do any additional setup after loading th ...

  7. nodejs get/request

    灌水评论示例: var http = require('http'); var querystring = require('querystring'); var postData = queryst ...

  8. png-8 和 png-24的区别

    png是一种图片格式,是Portable Networks Graphics的缩写,做ping. png8和png24的区别如下. 1 "PNG8"是指8位索引色位图," ...

  9. ORACLE查看数据文件包含哪些对象

    在上篇ORACLE查看表空间对象中,我介绍了如何查询一个表空间有那些数据库对象,那么我们是否可以查看某个数据文件包含那些数据库对象呢?如下所示 SELECT  E.SEGMENT_TYPE       ...

  10. C#语句1:选择语句二(switch break)

    (二)switch case switch case 必须与 break 一同使用.break是跳转语句.与switch case连用的时候是跳出最近的{}. 注: ●若case后面接收的是字符串类型 ...