fib数列变种题目
对一个正整数作如下操作:如果是偶数则除以2,如果是奇数则加1,如此进行直到1时操作停止,求经过9次操作变为1的数有多少个?
第9次操作:结果1由2产生。1个被操作数
8:结果2只能由4产生。1个被操作数
7:结果4由8、3产生。2个
6:结果8由16、7产生;结果3由6产生。共3个
5:结果16由32、15产生;结果7由14产生;结果6由12、5产生。共5个…
每次操作,偶数(2除外)都由该数减1和该数的2倍得来,奇数只由该数的2倍得来
各次操作的操作对象个数为:1,1,2,3,5,8,13,21,34,…
本题可以通过所给的变换规律,由易到难,确定操作可变为1的数组成斐波拉契数列,再根据所发现的规律求出经过9次操作变为1的数的个数。
fib数列变种题目的更多相关文章
- 【bzoj5118】Fib数列2 费马小定理+矩阵乘法
题目描述 Fib定义为Fib(0)=0,Fib(1)=1,对于n≥2,Fib(n)=Fib(n-1)+Fib(n-2) 现给出N,求Fib(2^n). 输入 本题有多组数据.第一行一个整数T,表示数据 ...
- HDU3977 Evil teacher 求fib数列模p的最小循环节
In the math class, the evil teacher gave you one unprecedented problem! Here f(n) is the n-th fibona ...
- [bzoj5118]Fib数列2_费马小定理_矩阵乘法
Fib数列2 bzoj-5118 题目大意:求Fib($2^n$). 注释:$1\le n\le 10^{15}$. 想法:开始一看觉得一定是道神题,多好的题面啊?结果...妈的,模数是质数,费马小定 ...
- FIB数列
斐波那契级数除以N会出现循环,此周期称为皮萨诺周期. 下面给出证明 必然会出现循环 这是基于下面事实: 1. R(n+2)=F(n+2) mod P=(F(n+1)+F(n)) mod P=(F(n+ ...
- bzoj5104: Fib数列
Description Fib数列为1,1,2,3,5,8... 求在Mod10^9+9的意义下,数字N在Fib数列中出现在哪个位置 无解输出-1 Input 一行,一个数字N,N < = 10 ...
- 动态规划之Fib数列类问题应用
一,问题描述 有个小孩上楼梯,共有N阶楼梯,小孩一次可以上1阶,2阶或者3阶.走到N阶楼梯,一共有多少种走法? 二,问题分析 DP之自顶向下分析方式: 爬到第N阶楼梯,一共只有三种情况(全划分,加法原 ...
- UVaLive 3357 Pinary (Fib数列+递归)
题意:求第 k 个不含前导 0 和连续 1 的二进制串. 析:1,10,100,101,1000,...很容易发现长度为 i 的二进制串的个数正好就是Fib数列的第 i 个数,因为第 i 个也有子问题 ...
- 1022. Fib数列
https://acm.sjtu.edu.cn/OnlineJudge/problem/1022 Description 定义Fib数列:1,1,2,3,5,8,13,…1,1,2,3,5,8,13, ...
- 【BZOJ5104】Fib数列(BSGS,二次剩余)
[BZOJ5104]Fib数列(BSGS,二次剩余) 题面 BZOJ 题解 首先求出斐波那契数列的通项: 令\(A=\frac{1+\sqrt 5}{2},B=\frac{1-\sqrt 5}{2}\ ...
随机推荐
- Orchard源码分析(3):Orchard.WarmupStarter程序集
概述 Orchard.WarmupStarter程序集包含三个类:WarmupUtility.WarmupHttpModule和Starter<T>.该程序集主要为Orchard应用启动初 ...
- “mybatis 中使用foreach 传
为了帮助网友解决“mybatis 中使用foreach 传”相关的问题,中国学网通过互联网对“mybatis 中使用foreach 传”相关的解决方案进行了整理,用户详细问题包括:mybatismap ...
- 在github上创建新分支
在github上创建仓库: Create a new repository on the command line touch README.md git init git add README.md ...
- java从一个目录拷贝文件到另一个目录下
** * 复制单个文件 * @param oldPath String 原文件路径 如:c:/fqf.txt * @param newPath String 复制后路径 如:f:/fqf.txt * ...
- 使用/调用 函数的时候, 前面加不加 对象或 this?
这个问题, 其实没有细想: 应该是这样的: (想明白了, 就会少很多困惑, 会对语言的把握 会 更深入更透彻) 任何一门 语言, (如果你自己去设计一门语言...). 都要规定 一些 "关键 ...
- 来自 Google 的 R 语言编码风格指南
来自 Google 的 R 语言编码风格指南R 语言是一门主要用于统计计算和绘图的高级编程语言. 这份 R 语言编码风格指南旨在让我们的 R 代码更容易阅读.分享和检查. 以下规则系与 Google ...
- matlab 聚类
目前已知matlab的聚类方法有三种: 一.利用 clusterdata函数对样本数据进行一次聚类,其缺点为可供用户选择的面较窄,不能更改距离的计算方法: 二.层次聚类,该方法较为灵活,需要进行细节了 ...
- js DOM Element属性和方法整理
节点操作,属性 1. childNodes.children 这两个属性获取到的子节点会根据浏览器的不同而不同的,所以一定要判断下nodeType是否为1. childNodes获取到的是NodeLi ...
- IEnumerable<> ICollection <> IList<> 区别
IEnumerable< ICollection < IList区别 public interface IEnumerable { IEnumerator GetEnumerator(); ...
- 利用LruCache为GridView异步加载大量网络图片完整示例
MainActivity如下: package cc.testlrucache; import android.os.Bundle; import android.widget.GridView; i ...