geometric median
The geometric median of a discrete set of sample points in a Euclidean space is the point minimizing the sum of distances to the sample points. This generalizes the median, which has the property of minimizing the sum of distances for one-dimensional data, and provides a central tendency in higher dimensions.
也就是说,中位数就是一个数组里到所有其他数据点的距离之和达到最小值的点。n维的也一样。
一维的中位数满足这个性质,证明的话可以用反证法。可以证明的到的是,中位数往左一点或者往右一点都会造成距离之和增加,所以中位数是到其他点的距离之和最小。
$Geometric Median =\underset{y \in \mathbb{R}^n}{\operatorname{arg\,min}} \sum_{i=1}^m \left \| x_i-y \right \|_2$
然后,问题来了。。。
Q:Given set of points in 2d grid space. Find a grid point such that sum of distance from all the points to this common point is minimum.
eg: p1: [0, 0] p2: [3, 0] p3: [0, 3]
ans: r: [0,0]
sum: 0 + 3 + 3 = 6
这题naive 方法就是$O(n^2)$,求出所有点到其他点的距离之和,再取最小。
这里指的是曼哈顿距离。manhattan distance. 欧式距离不好求,网上人家直接用kmeans。。
参考:
- http://stackoverflow.com/questions/12934213/how-to-find-out-geometric-median
- http://stackoverflow.com/questions/12905663/given-list-of-2d-points-find-the-point-closest-to-all-other-points/12905913#12905913
对于曼哈顿距离,可以先通过预处理,算出在x轴上,每个点到其他x的值的距离之和,这个开销在O(nlgn+2*n)。y轴的同理。
现在我们就能够在O(1)得到所有点到其他点的距离之和(曼哈顿距离)。所以就能够在O(n)中求出最小值了。(最大值都行啊)
bool compareByX(const Point &p1, const Point &p2) {
return p1.x < p2.x;
}
bool compareByY(const Point &p1, const Point &p2) {
return p1.y < p2.y;
}
int maxDistance(vector<Point> &points) {
if (points.empty()) return ;
sort(points.begin(), points.end(), compareByX);
int n = points.size();
vector<int> xdistances(n, ), ydistances(n, );
for (int i = ; i < n; ++i) {
xdistances[i] = xdistances[i - ] + i * (points[i].x - points[i - ].x);
}
int right = ;
for (int i = n - ; i >= ; --i) {
right = right + (n - i - ) * (points[i + ].x - points[i].x);
xdistances[i] += right;
}
// preprocessing based on y
sort(points.begin(), points.end(), compareByY);
for (int i = ; i < n; ++i) {
ydistances[i] = ydistances[i - ] + i * (points[i].y - points[i - ].y);
}
int top = ;
for (int i = n - ; i >= ; --i) {
top = top + (n - i - ) * (points[i + ].y - points[i].y);
ydistances[i] += top;
}
int max = ;
for (int i = ; i < n; ++i) {
if (xdistances[i] + ydistances[i] > max) {
max = xdistances[i] + ydistances[i];
}
}
return max;
}
q神好叼,给他mock interview的时候答出O(n)的。
geometric median的更多相关文章
- 论文笔记(Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration)
这是CVPR 2019的一篇oral. 预备知识点:Geometric median 几何中位数 \begin{equation}\underset{y \in \mathbb{R}^{n}}{\ar ...
- postgis几何操作函数集
管理操作函数 AddGeometryColumn - Adds a geometry column to an existing table of attributes. By default use ...
- [第四篇] PostGIS:“我让PG更完美!”
概要 本篇文章主要分为几何图形处理函数.仿生变换函数.聚类函数.边界分析函数.线性参考函数.轨迹函数.SFCGAL 函数.版本函数这八部分. Geometry Processing ST_Buffer ...
- No.004:Median of Two Sorted Arrays
问题: There are two sorted arrays nums1 and nums2 of size m and n respectively.Find the median of the ...
- [LeetCode] Find Median from Data Stream 找出数据流的中位数
Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...
- [LeetCode] Median of Two Sorted Arrays 两个有序数组的中位数
There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two ...
- Applying vector median filter on RGB image based on matlab
前言: 最近想看看矢量中值滤波(Vector median filter, VMF)在GRB图像上的滤波效果,意外的是找了一大圈却发现网上没有现成的code,所以通过matab亲自实现了一个,需要学习 ...
- 【leetcode】Median of Two Sorted Arrays
题目简述: There are two sorted arrays A and B of size m and n respectively. Find the median of the two s ...
- Codeforces Round #327 (Div. 2) B. Rebranding C. Median Smoothing
B. Rebranding The name of one small but proud corporation consists of n lowercase English letters. T ...
随机推荐
- node.js整理 02文件操作-常用API
NodeJS不仅能做网络编程,而且能够操作文件. 拷贝 小文件拷贝 var fs = require('fs'); function copy(src, dst) { fs.writeFileSync ...
- DOM--3 DOM核心和DOM2 HTML(2)
核心Node对象 由于继承扩展的关系,DOM中大部分对象会有Node对象的属性和方法,其中包括: nodeName DOM2核心中规定的每种nodeType预期的nodeName值 对象 返回值 El ...
- Gym 100814C Connecting Graph 并查集+LCA
Description standard input/output Statements Alex is known to be very clever, but Walter does not be ...
- 【转】win8.1下安装ubuntu
参考:http://jingyan.baidu.com/article/14bd256e0ca52ebb6d26129c.html Ubuntu 系统是一款优秀的.基于GNU/Linux 的平台的桌面 ...
- 寻找房间中心zz
Finding the Centroid of a Room Boundary It's been a while since my last post and I'm sure most of yo ...
- POJ2472106 miles to Chicago
106 miles to Chicago Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 3931 Accepted: 1 ...
- Java的集合类
转自:Q.Mr的博客 http://www.cnblogs.com/zrtqsk/p/3472258.html (本人第一次写博客,部分内容有参照李刚老师的疯狂java系列图书,如有遗漏错误,请多指教 ...
- URAL 1031. Railway Tickets(spfa)
题目链接 不知为何会在dp里呢...INF取小了,2Y. #include <cstring> #include <cstdio> #include <string> ...
- RSA加密算法原理及RES签名算法简介
第一部分:RSA算法原理与加密解密 一.RSA加密过程简述 A和B进行加密通信时,B首先要生成一对密钥.一个是公钥,给A,B自己持有私钥.A使用B的公钥加密要加密发送的内容,然后B在通过自己的私钥解密 ...
- 使用cjson进行对象的嵌套封装
共分两个部分,1)创建json.2)解析json 1)创建嵌套json的代码 char * makeJson() { cJSON * pRoot = NULL; cJSON * pSub_1 = NU ...