4688: One-Dimensional

Time Limit: 30 Sec  Memory Limit: 256 MB
Submit: 19  Solved: 12
[Submit][Status][Discuss]

Description

考虑一个含有 N 个细胞的一维细胞自动机。细胞从 0 到 N-1 标号。每个细胞有一个被表示成一个小于 M 的非负整数的状态。细胞的状态会在每个整数时刻发生骤变。我们定义 S(i,t)  表示第 i 个细胞在时刻 t 的状态。在时刻 t+1 的状态被表示为 S(i,t+1)=(A×S(i-1,t)+B×S(i,t)+C×S(i+1,t) )  mod M ,其中 A,B,C 是给定的非负整数。对于 i<0 或 N≤i ,我们定义 S(i,t)=0 。给定一个自动机的定义和其细胞在时刻 0 的初始状态,你的任务是计算时刻 T 时每个细胞的状态。

Input

输入包含多组测试数据。每组数据的第一行包含六个整数 N,M,A,B,C,T ,满足 0<N≤50,0<M≤1000,0≤A,B,C<M,0≤T≤〖10〗^9  。第二行包含 N 个小于 M 的非负整数,依次表示每个细胞在时刻 0 的状态。输入以六个零作为结束。

Output

对于每组数据,输出N个小于M的非负整数,每两个相邻的数字之间用一个空格隔开,表示每个细胞在时刻T的状态。

Sample Input

5 4 1 3 2 0
0 1 2 0 1
5 7 1 3 2 1
0 1 2 0 1
5 13 1 3 2 11
0 1 2 0 1
5 5 2 0 1 100
0 1 2 0 1
6 6 0 2 3 1000
0 1 2 0 1 4
20 1000 0 2 3 1000000000
0 1 2 0 1 0 1 2 0 1 0 1 2 0 1 0 1 2 0 1
30 2 1 0 1 1000000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
30 2 1 1 1 1000000000
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 5 2 3 1 1000000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0

Sample Output

0 1 2 0 1
2 0 0 4 3
2 12 10 9 11
3 0 4 2 1
0 4 2 0 4 4
0 376 752 0 376 0 376 752 0 376 0 376 752 0 376 0 376 752 0 376
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 3 2 2 2 3 3 1 4 3 1 2 3 0 4 3 3 0 4 2 2 2 2 1 1 2 1 3 0

HINT

Source

鸣谢Tangjz提供试题

Solution

数据范围一眼矩乘

构造矩阵$y=\begin{bmatrix}B& C& 0& ....& 0& 0& 0& \\ A& B& C& ....& 0& 0& 0& \\ & & & ....& & & & \\ 0& 0& 0& ....& A& B& C& \\ 0& 0& 0& ....& 0& A& B& \end{bmatrix}$

然后答案就是的$x*y^{T}$

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
inline int read()
{
int x=; char ch=getchar();
while (ch<'' || ch>'') {ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x;
}
int N,M,A,B,C,T;
struct MatrixNode{int a[][];}x,y;
inline MatrixNode mul(MatrixNode a,MatrixNode b)
{
MatrixNode c;
for (int i=; i<=N; i++)
for (int j=; j<=N; j++)
c.a[i][j]=;
for (int k=; k<=N; k++)
for (int i=; i<=N; i++)
if (a.a[i][k])
for (int j=; j<=N; j++)
if (b.a[k][j])
c.a[i][j]=(c.a[i][j]+(a.a[i][k]*b.a[k][j]))%M;
return c;
}
inline MatrixNode quick_pow(MatrixNode a,int b)
{
MatrixNode re;
for (int i=; i<=N; i++)
for (int j=; j<=N; j++)
re.a[i][j]=i==j? :;
for (int i=b; i; i>>=,a=mul(a,a))
if (i&) re=mul(re,a);
return re;
}
void Debug(MatrixNode x)
{
puts("start");
for (int i=; i<=N; i++,puts(""))
for (int j=; j<=N; j++)
printf("%d ",x.a[i][j]);
puts("end");
}
int main()
{
while (scanf("%d%d%d%d%d%d",&N,&M,&A,&B,&C,&T))
{
if (!(N+M+A+B+C+T)) break;
for (int i=; i<=N; i++) x.a[][i]=read();
for (int i=; i<=N; i++)
for (int j=; j<=N; j++)
y.a[i][j]=;
//Debug(x);
for (int i=; i<=N; i++)
y.a[i][i+]=A,y.a[i][i]=B,y.a[i][i-]=C;
//Debug(y);
MatrixNode t=quick_pow(y,T);
//Debug(t);
x=mul(x,t);
printf("%d",x.a[][]);
for (int i=; i<=N; i++) printf(" %d",x.a[][i]);
puts("");
}
return ;
}

【BZOJ-4688】One-Dimensional 矩阵乘法的更多相关文章

  1. BZOJ 5082: 弗拉格 矩阵乘法

    如果单点而不是求 sigma 的话还是比较好办的. 遇到这种前缀和相减的矩阵乘法可以增设一个 0 使得后面的能先加到前面,然后再算. 这样的话可以使的最后算出的是前缀和相加的形式. code: #in ...

  2. bzoj 1444 AC自动机 + 矩阵乘法 | 高斯消元

    恶补了一下AC自动机,花了一天时间终于全部搞明白了. 思路:将每个人的串加入AC自动机,在AC自动机生成的状态图上建边,注意单词末尾的节点只能转移到自己概率为1, 然后将矩阵自乘几十次后误差就很小了, ...

  3. bzoj 5015 [Snoi2017]礼物 矩阵乘法

    5015: [Snoi2017]礼物 Time Limit: 15 Sec  Memory Limit: 512 MBSubmit: 163  Solved: 115[Submit][Status][ ...

  4. [BZOJ 1009] [HNOI2008] GT考试 【AC自动机 + 矩阵乘法优化DP】

    题目链接:BZOJ - 1009 题目分析 题目要求求出不包含给定字符串的长度为 n 的字符串的数量. 既然这样,应该就是 KMP + DP ,用 f[i][j] 表示长度为 i ,匹配到模式串第 j ...

  5. [BZOJ 2738] 矩阵乘法 【分块】

    题目链接:BZOJ - 2738 题目分析 题目名称 “矩阵乘法” 与题目内容没有任何关系..就像VFK的 A+B Problem 一样.. 题目大意是给定一个矩阵,有许多询问,每次询问一个子矩阵中的 ...

  6. [BZOJ 2326] [HNOI2011] 数学作业 【矩阵乘法】

    题目链接:BZOJ - 2326 题目分析 数据范围达到了 10^18 ,显然需要矩阵乘法了! 可以发现,向数字尾部添加一个数字 x 的过程就是 Num = Num * 10^k + x .其中 k ...

  7. [BZOJ 1875] [SDOI 2009] HH去散步【矩阵乘法】

    题目链接:BZOJ - 1875 题目分析: 这道题如果去掉“不会立刻沿着刚刚走来的路走回”的限制,直接用邻接矩阵跑矩阵乘法就可以了.然而现在加了这个限制,建图的方式就要做一些改变.如果我们把每一条边 ...

  8. 【BZOJ】【2738】&【Tsinsen】【A1333】矩阵乘法

    整体二分+树状数组 过了[BZOJ][2527][POI2011]Meteors以后这题就没那么难啦~ 关键是[从小到大]依次插入数字,然后整体二分每个查询的第k大是在第几次插入中被插入的……嗯大概就 ...

  9. bzoj 2738 矩阵乘法

    其实这题跟矩阵乘法没有任何卵关系,直接整体二分,用二维树状数组维护(刚刚学会>_<),复杂度好像有点爆炸(好像有十几亿不知道是不是算错了),但我们不能怂啊23333. #include&l ...

  10. bzoj 1009 [HNOI2008]GT考试(DP+KMP+矩阵乘法)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1009 [题意] 给定一个字符串T,问长度为n且不包含串T的字符串有多少种. [思路] ...

随机推荐

  1. Python的高级特性2:列表推导式,生成器与迭代器

    一.列表推导式 1.列表推导式是颇具python风格的一种写法.这种写法除了高效,也更简短. In [23]: {i:el for i,el in enumerate(["one" ...

  2. linux svn

    1.回滚 一直在找svn回滚的方法,这个还是很实用的,屡试不爽阿 经常由于坑爹的需求,功能要切回到之前的某一个版本.有两种方法可以实现: 方法1: 用svn merge  1) 先 svn up,保证 ...

  3. 046医疗项目-模块四:采购单模块—采购单审核(Dao,Service,Action三层)

    当医院把采购单提交之后,由监管单位进行采购单审核,由卫生院及卫生局进行审核.卫生局可以审核所有医院创建的采购单,卫生院只审核本辖区医院创建的采购单. 操作流程: 点击"采购单审核" ...

  4. Visual Studio 2013编辑HTML文件无设计视图的解决方案

    在Visual Studio 2013中编辑HTML文件,会发现没有设计视图. 解决方法:点击Visual Studio 2013的”工具“菜单,再点击”选项“—>文本编辑器—>文件扩展名 ...

  5. Activity中获取view的高度和宽度为0的原因以及解决方案

    在activity中可以调用View.getWidth.View.getHeight().View.getMeasuredWidth() .View.getgetMeasuredHeight()来获得 ...

  6. [转]git fetch 的简单用法:更新远程代码到本地仓库

    [原文地址]:http://my.eoe.cn/com360/archive/3533.html Git中从远程的分支获取最新的版本到本地方式如下,如何更新下载到代码到本地,请参阅ice的博客基于Gi ...

  7. 学习C++.Primer.Plus 6 分支语句和逻辑操作符

    ||. &&操作符是一个顺序点 < 操作符从左向右结合 ; < age < )//17<age为true, = 1,肯定 < 27.所以为整个条件为tru ...

  8. 用linqPad帮助你快速学习LINQ

    在这里我向大家推荐的一个具是LinqPad有了这个工具并熟练使用就可以很快学习并掌握linq linqPad下载地址:http://www.linqpad.net/ 它也自带了很多例子方便大家查询,l ...

  9. opencv2-新特性及Mat

    本文参照<opencv_2.4.9tutorial>的core部分完成.因为功力还不足以学习侯捷那种大师一样去深入浅出的解析opencv的源码,也只能先学会怎么用opencv,然后实在觉得 ...

  10. 【开源分享:入门到精通ASP.NET MVC+EF6+Bootstrap】从这里开始,一起搭框架(1)开篇介绍

    框架简介 这几年一直在做ASP.NET开发,几年前做项目都是老老实实一行行的写代码,后来发现那些高手基本都会有自己积累起来的代码库,现在称之为开发框架,基础代码不用再去堆,主要精力可以集中在业务逻辑实 ...