E. Tetrahedron(数学推导)
2 seconds
256 megabytes
standard input
standard output
You are given a tetrahedron. Let's mark its vertices with letters A, B, C and D correspondingly.

An ant is standing in the vertex D of the tetrahedron. The ant is quite active and he wouldn't stay idle. At each moment of time he makes a step from one vertex to another one along some edge of the tetrahedron. The ant just can't stand on one place.
You do not have to do much to solve the problem: your task is to count the number of ways in which the ant can go from the initial vertexD to itself in exactly n steps. In other words, you are asked to find out the number of different cyclic paths with the length of n from vertex D to itself. As the number can be quite large, you should print it modulo 1000000007 (109 + 7).
The first line contains the only integer n (1 ≤ n ≤ 107) — the required length of the cyclic path.
Print the only integer — the required number of ways modulo 1000000007 (109 + 7).
2
3
4
21
The required paths in the first sample are:
- D - A - D
- D - B - D
- D - C - D
解题说明:此题可以算是一道DP问题,从椎体的顶部D出发,指定走n步,要求最后回到D即可。假设走i步回到起点的走法数为f[i],那么可以得到
f[i]=f[i-1]*2+f[i-2]*3
这个公式的意思是说,在i-1步能走到起点的所有行走路线中,我们调整最后两步,让倒数第2步走到除当前点和起点外的另外两个点,最后一步再走到起点,所以选择是f[i-1]*2. 至于i-2步,依旧是考虑最后两个步骤,倒数第2步没有什么要求,选择有3种。有了这个公式,最后打表即可。
- #include<cstdio>
- #include<iostream>
- using namespace std;
- int main()
- {
- unsigned int n;
- int i;
- long long f[10000001];
- f[1] = 0;
- f[2] = 3;
- f[3] = 6;
- for(i=4; i<10000001;i++)
- {
- f[i] = f[i-1] * 2 + f[i-2] * 3;
- f[i] %= 1000000007;
- }
- scanf("%d", &n);
- cout<<f[n]<<endl;
- return 0;
- }
E. Tetrahedron(数学推导)的更多相关文章
- 借One-Class-SVM回顾SMO在SVM中的数学推导--记录毕业论文5
上篇记录了一些决策树算法,这篇是借OC-SVM填回SMO在SVM中的数学推导这个坑. 参考文献: http://research.microsoft.com/pubs/69644/tr-98-14.p ...
- 关于不同进制数之间转换的数学推导【Written By KillerLegend】
关于不同进制数之间转换的数学推导 涉及范围:正整数范围内二进制(Binary),八进制(Octonary),十进制(Decimal),十六进制(hexadecimal)之间的转换 数的进制有多种,比如 ...
- UVA - 10014 - Simple calculations (经典的数学推导题!!)
UVA - 10014 Simple calculations Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & ...
- 『sumdiv 数学推导 分治』
sumdiv(POJ 1845) Description 给定两个自然数A和B,S为A^B的所有正整数约数和,编程输出S mod 9901的结果. Input Format 只有一行,两个用空格隔开的 ...
- LDA-线性判别分析(二)Two-classes 情形的数学推导
本来是要调研 Latent Dirichlet Allocation 的那个 LDA 的, 没想到查到很多关于 Linear Discriminant Analysis 这个 LDA 的资料.初步看了 ...
- leetcode 343. Integer Break(dp或数学推导)
Given a positive integer n, break it into the sum of at least two positive integers and maximize the ...
- [hdu5307] He is Flying [FFT+数学推导]
题面 传送门 思路 看到这道题,我的第一想法是前缀和瞎搞,说不定能$O\left(n\right)$? 事实证明我的确是瞎扯...... 题目中的提示 这道题的数据中告诉了我们: $sum\left( ...
- ZOJ3329(数学推导+期望递推)
要点: 1.期望的套路,要求n以上的期望,则设dp[i]为i分距离终点的期望步数,则终点dp值为0,答案是dp[0]. 2.此题主要在于数学推导,一方面是要写出dp[i] = 什么,虽然一大串但是思维 ...
- [国家集训队]整数的lqp拆分 数学推导 打表找规律
题解: 考场上靠打表找规律切的题,不过严谨的数学推导才是本题精妙所在:求:$\sum\prod_{i=1}^{m}F_{a{i}}$ 设 $f(i)$ 为 $N=i$ 时的答案,$F_{i}$ 为斐波 ...
随机推荐
- Matrix67大牛推荐的省选知识点
时间复杂度(渐近时间复杂度的严格定义,NP问题,时间复杂度的分析方法,主定理)排序算法(平方排序算法的应用,Shell排序,快速排序,归并排序,时间复杂度下界,三种线性时间排序,外部排序)数论(整除, ...
- 第二十五课:jQuery.event.trigger的源码解读
本课主要来讲解jQuery.event.trigger的源码解读. trigger = function(event, data, elem, onlyHandlers){ if(elem & ...
- Codeforces Round #381 (Div. 2) D. Alyona and a tree 树上二分+前缀和思想
题目链接: http://codeforces.com/contest/740/problem/D D. Alyona and a tree time limit per test2 secondsm ...
- [转]Java中的对象和对象引用实例浅析
在Java中,有一组名词经常一起出现,它们就是“对象和对象引用”,很多朋友在初学Java的时候可能经常会混淆这2个概念,觉得它们是一回事,事实上则不然.今天我们就来一起了解一下对象和对象引用之间的区别 ...
- 坑爹的BFC;块格式上下文
Formatting context(FC) Formatting context 是 W3C CSS2.1 规范中的一个概念.它是页面中的一块渲染区域,并且有一套渲染规则,它决定了其子元素将如何定位 ...
- POJ 2153 stl
#include<iostream> #include<map> #include<string> using namespace std; int main() ...
- Hibernate-二级缓存策略
二级缓存的策略 当多个并发的事务同时访问持久化层的缓存中的相同数据时,会引起并发问题,必须采用必要的事务隔离措施. 在进程范围或集群范围的缓存,即第二级缓存,会出现并发问题.因此可以设定以下4种类型的 ...
- JAVA运行java程序
程序代码: public class f{ public static void main(String[] args){ String foo1 = args[1]; String foo2 = a ...
- 【CodeForces 605A】BUPT 2015 newbie practice #2 div2-E - Sorting Railway Cars
http://acm.hust.edu.cn/vjudge/contest/view.action?cid=102419#problem/E Description An infinitely lon ...
- Oracle中的伪列
分页查询中,需要用到伪列rownum,代码如下: select * from (select rownum rn, name from cost where rownum <= 6) where ...